Assignment, Sorting and Matching Problems: Introduction to the Rest of the Course

Bring firms back into wage determination:

Issues:

(A) how to match workers to firms - trivial in the case of pure efficiency units models. Not so trivial when workers have different efficiency at different firms.

We start our investigation under the assumptions of:

Perfect certainty on both sides. (No private information)

No transactions costs (mobility costs)

1-1 matches with transferrable utility and money (one worker with one firm). Still problem not trivial.
Assignment, Sorting and Matching Problems:
Introduction to the Rest of the Course

Bring firms back into wage determination:

Issues:

(A) how to match workers to firms - trivial in the case of pure efficiency units models. Not so trivial when workers have different efficiency at different firms.

We start our investigation under the assumptions of:

Perfect certainty on both sides. (No private information)

No transactions costs (mobility costs)

1-1 matches with transferrable utility and money (one worker with one firm). Still problem not trivial.
Gorman-Lancaster is multi-attributed version of this type of theory

1. a. We have an efficiency units model if the identify of the firm irrelevant: (workers equally productive at all firms) - a model of general human capital. Rearrange workers among firms and get no change in output.

b. We get a model with comparative advantage if workers have different advantages in different sectors but assignment of a worker to a sector does not preclude any other worker going there: sectors may be firms or industrial sectors. (Now sorting matters - and a nontrivial labor supply function).

Koopmans-Beckman and Sattinger - Hedonics - Tinbergen

1. a. A model with absolute advantage if placement of a worker in one firm (sector) precludes other workers 1 - 1 match or (1 - many match can be achieved).

Absolute advantage:

a. i. (a). Place A to α

 (b). Means B can’t go to α.

 (c). (Not just relative productivity, but who is best determines assignment). Continuous versions - worker and firms have close substitutes

 (d). Discrete version (Koopmans–Beckman) - no close
Gorman-Lancaster is multi-attributed version of this type of theory

1. a. We have an efficiency units model if the identify of the firm irrelevant: (workers equally productive at all firms) - a model of general human capital. Rearrange workers among firms and get no change in output.

b. We get a model with comparative advantage if workers have different advantages in different sectors but assignment of a worker to a sector does not preclude any other worker going there: sectors may be firms or industrial sectors.(Now sorting matters - and a nontrivial labor supply function).

Koopmans-Beckman and Sattinger - Hedonics - Tinbergen

1. a. A model with absolute advantage if placement of a worker in one firm (sector) precludes other workers 1 - 1 match or (1 - many match can be achieved).

Absolute advantage:

a. i. (a). Place A to α

(b). Means B can’t go to α.

(c). (Not just relative productivity, but who is best determines assignment). Continuous versions - worker and firms have close substitutes

(d). Discrete version (Koopmans–Beckman) - no close . . .
substitutes. (Raises rent division problem) // solved in (i).

The discrete version requires no notion of comparing any 2 workers (no need for a scale) // no need to compare - (other notions require such a comparison).

Roy - based on notion of measurable skills so does Gorman-Lancaster.

Start with the simplest model.
Sattinger:

Assume we can rank workers and firms by a skill scale: ℓ is amount of labor skill, c is amount of capital owned by firm.

$F(\ell, c)$ is output. \exists a uniform production technology. One worker - one firm match $F_\ell > 0, F_c > 0, F_{\ell\ell} < 0, F_{cc} < 0$

no need to make scale restrictions: (can be increasing) homogeneous output of firms, identical technologies.

(3) Let $G(\ell)$ be cdf of ℓ in population. Let $K(c)$ be cdf of c in population. Assume both monotone strictly increasing, density has positive support - no mass points.

Let $W(\ell)$ be wage for worker of type ℓ. Let $\pi(c)$ “profit” firm of type c.
Sattinger:

Assume we can rank workers and firms by a skill scale: ℓ is amount of labor skill, c is amount of capital owned by firm.

$F(\ell, c)$ is output. \exists a uniform production technology. One worker - one firm match $F_{\ell} > 0, F_c > 0, F_{\ell\ell} < 0, F_{cc} < 0$

no need to make scale restrictions: (can be increasing) homogeneous output of firms, identical technologies.

(3) Let $G(\ell)$ be cdf of ℓ in population. Let $K(c)$ be cdf of c in population. Assume both monotone strictly increasing, density has positive support - no mass points.

Let $W(\ell)$ be wage for worker of type ℓ. Let $\pi(c)$ “profit” firm of type c.
Assume $\frac{\partial^2 F}{\partial \ell \partial c} > 0$ (not critical). Assume wage function exist: something to be proved.

Firm indexed by c:

Max ℓ: $F(\ell, c) - W(\ell)$

FOC $\frac{\partial F}{\partial \ell} = W'(\ell)$

SOC $\frac{\partial^2 F}{\partial \ell^2} - W''(\ell) < 0$

defines demand for worker of type ℓ for firm type c.

$$\frac{\partial}{\partial \ell} \left(W''(\ell) - \frac{\partial^2 F(\ell, c)}{\partial \ell^2} \right) = \left(\frac{\partial^2 F}{\partial \ell \partial c} \right) \frac{\partial c}{\partial \ell}$$

> > 0, from SOC

\[\cdot \cdot \cdot \frac{\partial c}{\partial \ell} \text{ ("best firms match with best workers"}) \]
Assume $\frac{\partial^2 F}{\partial \ell \partial c} > 0$ (not critical). Assume wage function exist: something to be proved.

Firm indexed by c:

Max ℓ \hspace{1cm} $F(\ell, c) - W(\ell)$

FOC \hspace{1cm} $\frac{\partial F}{\partial \ell} = W'(\ell)$

SOC \hspace{1cm} $\frac{\partial^2 F}{\partial \ell^2} - W''(\ell) < 0$

Differentiate

FOC totally wrt ℓ

$$W''(\ell) - \frac{\partial^2 F(\ell, c)}{\partial \ell^2} - \frac{\partial^2 F}{\partial \ell \partial c} \frac{\partial c}{\partial \ell} = 0$$

$$\left(W''(\ell) - \frac{\partial^2 F(\ell, c)}{\partial \ell^2} \right) = \left(\frac{\partial^2 F}{\partial \ell \partial c} \right) \frac{\partial c}{\partial \ell} \quad \text{> 0, from SOC}$$

$\therefore \frac{\partial c}{\partial \ell}$ ("best firms match with best workers")
opposite true if we have $\frac{\partial^2 F}{\partial \ell \partial c} < 0$.

Retain $\frac{\partial^2 F}{\partial \ell \partial c} > 0$: Profits residually determined:
\[
\pi(c) = F(\ell(c), c) - w(\ell(c)).
\]

Observe that we have that roles of ℓ and c can be reversed (labor hires capital) and labor incomes could be residually determined.

The continuum hypothesis for skills \implies local returns to scale
\[
dF = F_\ell d\ell + F_c dc
\]
∴ we get product exhaustion.

∴ residual claimant gets marginal product, no matter who is claimant.

Now suppose # of workers (N_ℓ)

of capitalists (N_c).

Then let W_R be the reserve price of workers (what they could
opposite true if we have $\frac{\partial^2 F}{\partial \ell \partial c} < 0$.

Retain $\frac{\partial^2 F}{\partial \ell \partial c} > 0$: Profits residually determined:

$$\pi(c) = F(\ell(c), c) - w(\ell(c)).$$

Observe that we have that roles of ℓ and c can be reversed (labor hires capital) and labor incomes could be residually determined.

The continuum hypothesis for skills \implies local returns to scale

$$dF = F_\ell d\ell + F_c dc$$

\therefore we get product exhaustion.

\therefore residual claimant gets marginal product, no matter who is claimant.

Now suppose # of workers (N_ℓ)

of capitalists (N_c).

Then let W_R be the reserve price of workers (what they could ...
get elsewhere). Let π_R be reserve price of capitalist. Let ℓ^* be the least productive worker (employed).

We need $W(\ell^*) \geq W_R$. If all capital employed,

ℓ^* works with $\frac{c}{\text{least productive capitalists}}$ $c \in [\underline{c}, \bar{c}]$.

Assumes $\pi(\underline{c}) \geq \pi_R$. Assuming these reserve wage constraints are satisfied, we have that

$$N_{\ell} \int_{\ell^*}^{\infty} g(\ell) d\ell = N_c \int_{\underline{c}}^{\bar{c}} k(c) dc.$$

This defines an implicit equation:

$$\ell = \varphi(c) \text{ (most productive match)}$$

(has inverse from strictly increasing assumption).

Feasibility requires: $\varphi^{-1}(\ell) = c$

$$\pi(\underline{c}) = F(\ell(\underline{c}), \underline{c}) - W(\ell^*) \geq \pi_R$$

if not satisfied we have unemployed capital: (jack up $c^* > \underline{c}$) until
get elsewhere). Let π_R be reserve price of capitalist. Let ℓ^* be the least productive worker (employed).

We need $W(\ell^*) \geq W_R$. If all capital employed, ℓ^* works with $c \in [\underline{c}, \bar{c}]$. Assumes $\pi(\underline{c})$

This defines an implicit equation:

$$\ell = \varphi(c) \quad \text{(most productive match)}$$

(has inverse from strictly increasing assumption).

Feasibility requires: $\varphi^{-1}(\ell) = c$

$$\pi(\underline{c}) = F(\ell(\underline{c}), \underline{c}) - W(\ell^*) \geq \pi_R$$

if not satisfied we have unemployed capital: (jack up $c^* > \underline{c}$) until ...
constraint satisfied. Then wage function is given by FOC (using φ)

$$W'(\ell) = \frac{\partial F}{\partial \ell}(\ell, \varphi^{-1}(\ell))$$

defines hedonic line

$$W''(\ell) = F_{\ell\ell} + F_{\ell c} \frac{\partial c}{\partial \ell}$$

\therefore SOC satisfied. Thus the wage is given by

$$W'(\ell^*) = \frac{\partial F}{\partial \ell}(\ell^*, \varphi^{-1}(\ell^*)).$$

Competitive labor market forces $w(\ell^*) = w_R$

$$W(\ell) = \int_{\ell^*}^{\ell} \frac{\partial F}{\partial x}(x, \varphi^{-1}(x)) dx + W_R.$$

“hedonic function”

Similarly

$$\pi(c) = \int_{c_*}^{c} \frac{dF}{dZ}(\varphi(Z), Z) dZ.$$

Under our assumptions (more workers than firms and unemployed worker), rents are assigned to firms. Density of earnings is obtained
constraint satisfied. Then wage function is given by FOC (using φ)

$$W''(\ell) = \frac{\partial F}{\partial \ell}(\ell, \varphi^{-1}(\ell))$$

defines hedonic line

$$W''(\ell) = F_{\ell \ell} + F_{\ell c} \frac{\partial c}{\partial \ell} + F_{cc} \frac{\partial c}{\partial \ell}$$

\therefore SOC satisfied. Thus the wage is given by

$$W'(\ell^*) = \frac{\partial F}{\partial \ell}(\ell^*, \varphi^{-1}(\ell^*))$$.

Competitive labor market forces $w(\ell^*) = w_R$

$$W(\ell) = \int_{\ell^*}^{\ell} \frac{\partial F}{\partial x}(x, \varphi^{-1}(x))dx + W_R.$$

“hedonic function”

Similarly

$$\pi(c) = \int_{c_*}^{c} \frac{dF}{dZ}(\varphi(Z), Z)dZ.$$

Under our assumptions (more workers than firms and unemployed worker), rents are assigned to firms. Density of earnings is obtained ...
from inverting wage function

\[W(\ell) = \eta(\ell) \quad \eta^{-1}(W) = \ell \]

density of earnings is

\[g(\eta^{-1}(W)) \frac{d\eta^{-1}(W)}{dW} \]

density of profits likewise. Now, we can operate more generally-
example is fruitful.
Cobb Douglas
\[F(\ell, c) = \ell^\alpha c^\beta \quad \alpha > 0, \beta > 0 \]

Assume Pareto distribution of endowments:
\[g(\ell) = d\ell^{-\gamma} \quad \gamma > 2, \quad \ell \geq 1 \]
\[k(c) = hc^{-\sigma} \quad \sigma > 2, \quad c \geq 1. \]

This ensures finite variances. Obviously \(F_{\ell c} > 0 \).

Equilibrium:
\[N_c \int_{c(\ell)}^\infty h x^{-\sigma} \, dx = N_\ell \int_{\ell}^\infty d\eta^{-\gamma} \, d\eta \]
\[c(\ell) = \left[\frac{N_\ell d (\sigma - 1)}{N_c h (\gamma - 1)} \right] \frac{1}{1 - \sigma} \frac{1 - \gamma}{(\ell)1 - \sigma}. \]

FOC (on wages)
\[\alpha \ell^{\alpha - 1} c^\beta = W'(\ell) : \text{substitute for } c(\ell) \text{ to reach} \]
\[\therefore W'(\ell) = \alpha \left[\frac{N_\ell d (\sigma - 1)}{N_c h (\gamma - 1)} \right] \frac{\beta}{1 - \sigma} \ell^\beta. \]
Cobb Douglas

\[F(\ell, c) = \ell^\alpha c^\beta \quad \alpha > 0, \beta > 0 \]

Assume Pareto distribution of endowments:

\[
\begin{align*}
g(\ell) &= d\ell^{-\gamma} \quad \gamma > 2, \quad \ell \geq 1 \\
k(c) &= hc^{-\sigma} \quad \sigma > 2, \quad c \geq 1.
\end{align*}
\]

This ensures finite variances. Obviously \(F_{\ell c} > 0 \).

Equilibrium:

\[
\begin{align*}
N_c \int_{c(\ell)}^{\infty} h x^{-\sigma} dx &= N_\ell \int_{\ell}^{\infty} d\eta^{-\gamma} d\eta \\
c(\ell) &= \left[\frac{N_\ell d (\sigma - 1)}{N_c h (\gamma - 1)} \right] \frac{1}{1 - \sigma} \frac{1 - \gamma}{(\ell)^{1 - \sigma}}.
\end{align*}
\]

FOC (on wages)

\[
\alpha \ell^{\alpha - 1} c^\beta = W'(\ell) : \text{substitute for } c(\ell) \text{ to reach}
\]

\[
\therefore W'(\ell) = \alpha \left[\frac{N_\ell d (\sigma - 1)}{N_c h (\gamma - 1)} \right] \frac{\beta}{1 - \sigma} \ell^p
\]
\[P = \frac{(\alpha - 1)(1 - \sigma) + \beta(1 - \gamma)}{1 - \sigma} \]
\[W(\ell) = \frac{\alpha(1 - \sigma) \left[\frac{N_{el}d(\sigma - 1)}{N_{ch}(\gamma - 1)} \right]^{\frac{\beta}{1 - \sigma}}}{\alpha(1 - \sigma) + \beta(1 - \gamma)} \]
\[\cdot (\ell) \left(\frac{\alpha(1 - \sigma) + \beta(1 - \gamma)}{1 - \sigma} \right) + c_1. \]

Obviously \(W(\ell) \uparrow \) as \(\ell \uparrow \). Convexity or concavity hinges on
\[P \leq 0 \]
\[P = (\alpha - 1) + \beta \frac{(1 - \gamma)}{1 - \sigma} \]

if \(\alpha + \beta = 1 \) (CRS)

\[P = \beta \left[-1 + \frac{1 - \gamma}{1 - \sigma} \right] \]
\[= \beta \left[\frac{\sigma - \gamma}{1 - \sigma} \right] = \frac{\gamma - \sigma}{\sigma - 1} \]

If \(\gamma > \sigma \), \(W(\ell) \) is convex in \(\ell \). (More firms out in tail then workers - they get scarcity payment). If \(\beta \uparrow \) (from CRS) reinforces
\[P = \frac{(\alpha - 1)(1 - \sigma) + \beta(1 - \gamma)}{1 - \sigma} \]

\[W(\ell) = \frac{\alpha(1 - \sigma) \left[\frac{N_{\ell} d(\sigma - 1)}{N_{\ell} h(\gamma - 1)} \right]^{\frac{\beta}{1 - \sigma}}}{\alpha(1 - \sigma) + \beta(1 - \gamma)} \]

\[\cdot (\ell) \left(\frac{\alpha(1 - \sigma) + \beta(1 - \gamma)}{1 - \sigma} \right) + c_1. \]

Obviously \(W(\ell) \uparrow \) as \(\ell \uparrow \). Convexity or concavity hinges on \(P \leq 0 \)

\[P = (\alpha - 1) + \beta \frac{(1 - \gamma)}{1 - \sigma} \]

if \(\alpha + \beta = 1 \) (CRS)

\[P = \beta \left[-1 - \frac{1 - \gamma}{1 - \sigma} \right] \]

\[= \beta \left[\frac{\sigma - \gamma}{1 - \sigma} \right] = \frac{\gamma - \sigma}{\sigma - 1} \]

If \(\gamma > \sigma \), \(W(\ell) \) is convex in \(\ell \). (More firms out in tail then workers - they get scarcity payment). If \(\beta \uparrow \) (from CRS) reinforces...
effect (renders capital relatively more productive).

Thus if $\gamma = \sigma$ and $\beta + \alpha > 1$ (β big enough) has effect on convexity. Increasing returns to scale gives rise to convexity. Now

$$\pi(c) = \ell^\alpha c^\beta - w(\ell)$$

now $\ell = g_0(c) \left(\frac{1 - \sigma}{1 - \gamma} \right)$

$$\pi(c) = \left[g_0(c) \left(\frac{1 - \sigma}{1 - \gamma} \right) \right]^\alpha c^\beta$$

$$-g_1 \left(\frac{1 - \sigma}{g_0(c) \left(\frac{1 - \sigma}{1 - \gamma} \right)} \right) \frac{\alpha(1 - \sigma) + \beta(1 - \gamma)}{1 - \sigma}$$

$$-K_1 \frac{\alpha(1 - \sigma)}{1 - \gamma} + \beta = \frac{\alpha(1 - \sigma) + \beta(1 - \gamma)}{1 - \gamma}$$

\[\therefore\] convexity of $\pi(c)$ is determined by sign of
\[
\frac{\alpha(1 - \sigma) + \beta(1 - \gamma)}{1 - r} - 1
\]
\[
= \frac{\alpha(1 - \sigma) + (\beta - 1)(1 - \gamma) - 1 + \gamma}{1 - \gamma}
\]
\[
= \frac{(\gamma - 1)(\beta - 1) + (\sigma - 1)\alpha}{\gamma - 1}
\]
\[
= (\beta - 1) + \left(\frac{\sigma - 1}{\gamma - 1}\right)\alpha.
\]

Observe if \(\alpha + \beta \gg 1\) then both \(\pi(c)\) and \(W(\ell)\) can be convex in their arguments. With CRS one must be concave, the other convex.

Linearity arises when we have \(\gamma = \sigma\) and \(\alpha + \beta = 1\)

\(\gamma\) big relative to \(\sigma\) (scarcity of labor at top)

\(\alpha, \beta\) big - capital productive - we get convexity at top of distribution. Suppose we invoke full employment conditions for capital:
\[
\frac{\alpha(1 - \sigma) + \beta(1 - \gamma)}{1 - \rho} - 1
= \frac{\alpha(1 - \sigma) + (\beta - 1)(1 - \gamma) - 1 + \gamma}{1 - \gamma}
= \frac{(\gamma - 1)(\beta - 1) + (\sigma - 1)\alpha}{\gamma - 1}
= (\beta - 1) + \left(\frac{\sigma - 1}{\gamma - 1}\right)\alpha.
\]

Observe if \(\alpha + \beta \gg 1\) then both \(\pi(c)\) and \(W(\ell)\) can be convex in their arguments. With CRS one must be concave, the other convex.

Linearity arises when we have \(\gamma = \sigma\) and \(\alpha + \beta = 1\)

\(\gamma\) big relative to \(\sigma\) (scarcity of labor at top)

\(\alpha, \beta\) big - capital productive - we get convexity at top of distribution. Suppose we invoke full employment conditions for capital:
\[N_\ell > N_c \quad \pi(1) \geq \pi_R \]

need to check this.

At lowest level of employment, we have (from \(c(\ell) \) function)

\[
1 = \left[\frac{N_\ell d(\sigma - 1)}{N_c h(\gamma - 1)} \right] \frac{1}{1 - \sigma} \frac{1 - \gamma}{(\ell^*)^{1 - \sigma}}
\]

\[
\therefore \ell^* = \left[\frac{N_\ell d(\sigma - 1)}{N_c h(\gamma - 1)} \right] \frac{1}{\gamma - 1}
\]

\[
W(\ell^*) = W_R
\]

\[
\therefore c_1 = W_R - \frac{\alpha(1 - \sigma)}{\alpha(1 - \sigma) + \beta(1 - \gamma)}
\]
\[
\left[\frac{N_\ell d(\sigma - 1)}{N_c h(\gamma - 1)} \right] \frac{\beta}{1 - \sigma} (\ell^*) \frac{\alpha(1 - \sigma) + \beta(1 - \gamma)}{1 - \sigma}.
\]

\(\pi(c)\) defined residually. (Need to check \(\pi(1) > \pi_R\)).

Distribution of earnings: (generated from distribution of endowments by the pricing function).

Look at distribution of translated earnings.

\[(W(\ell) - c_1) \sim (W - c_1)^{-[1-\frac{(\gamma - 1)(\alpha - 1)}{\alpha(\sigma - 1) + \beta(\gamma - 1)}]}\]

distribution of raw skills \(\ell^{-\gamma}\). One way to measure inequality is gain over \(\gamma\) is

\[
1 + \frac{(\gamma - 1)(\sigma - 1)}{\alpha(\sigma - 1) + \beta(\gamma - 1)} > \gamma
\]

i.e.

\[
\frac{1}{\alpha + \beta \frac{\gamma - 1}{\sigma - 1}} > 1
\]

\(\therefore\) more unequal higher returns to scale and higher is \(\sigma\)

(inequality in capital).
\[
\left[\frac{N_d e (\sigma - 1)}{N_c h (\gamma - 1)} \right] \frac{\beta}{1 - \sigma} \frac{\alpha (1 - \sigma) + \beta (1 - \gamma)}{(\ell^*)}.
\]

\(\pi(c)\) defined residually. (Need to check \(\pi(1) > \pi_R\)).

Distribution of earnings: (generated from distribution of endowments by the pricing function).

Look at distribution of translated earnings.

\[(W(\ell) - c_1) \sim (W - c_1)^{-[1 - \frac{(\gamma - 1)(\alpha - 1)}{\alpha (\sigma - 1) + \beta (\gamma - 1)}]}\]

distribution of raw skills \(\ell^{-\gamma}\). One way to measure inequality is gain over \(\gamma\) is

\[1 + \frac{(\gamma - 1)(\sigma - 1)}{\alpha (\sigma - 1) + \beta (\gamma - 1)} > \gamma\]

i.e.

\[\frac{1}{\alpha + \beta \frac{(\gamma - 1)}{\sigma - 1}} > 1\]

\[\therefore\] more unequal higher returns to scale and higher is \(\sigma\) (inequality in capital).
Hedonic Functions (Tinbergen, 1951, 1956 Rosen, 1974).

What can you estimate when you regress W on ℓ? Obviously we can estimate c_1,
\[
\frac{\alpha(\sigma - 1) + \beta(\gamma - 1)}{(\sigma - 1)}
\]
and slope coefficient.

Do not recover any single parameter of interest. We get lowest ℓ in market and from distribution of ℓ and c. We can get γ, σ, h (if c fully employed). If we know ℓ^*, we can get d. Know N_ℓ and N_c but α, β in data. Idea (Rosen, 1974) assume perfect data // no error term in model, no omitted variables. Use FOC for firm,
\[
\ln \alpha + (\alpha - 1)\ln \ell + \beta \ln c = \ln W'(\ell)
\]
i.e \[
\ln \ell = -\frac{\ln \alpha}{\alpha - 1} + \frac{\ln W'(\ell)}{\alpha - 1} - \frac{\beta \ln c}{\alpha - 1}.
\]

Apparently, we can regress $\ln \ell$ on $\ln W'(\ell)$ but
Hedonic Functions (Tinbergen, 1951, 1956 Rosen, 1974).

What can you estimate when you regress W on l? Obviously we can estimate c_1,

$$\frac{\alpha(\sigma - 1) + \beta(\gamma - 1)}{(\sigma - 1)}$$

and slope coefficient.

Do not recover any single parameter of interest. We get lowest l in market and from distribution of l and c. We can get γ, σ, h (if c fully employed). If we know l^*, we can get d. Know N_l and N_c but α, β in data. Idea (Rosen, 1974) assume perfect data // no error term in model, no omitted variables. Use FOC for firm,

$$\ln \alpha + (\alpha - 1)\ln l + \beta \ln c = \ln W'(l)$$

i.e

$$\ln l = -\frac{\ln \alpha}{\alpha - 1} + \frac{\ln W'(l)}{\alpha - 1} - \frac{\beta \ln c}{\alpha - 1}.$$

Apparently, we can regress $\ln l$ on $\ln W'(l)$ but . . .
\[\ln c = m_0 + \left(\frac{1 - \gamma}{1 - \sigma} \right) \ln c. \]

We get no independent variation. \(\ln W'(\ell) \), \(\ln c \) and \(\ln \ell \) explain each other perfectly (method wrong).

More general principle:

\[\text{FOC: } \frac{\partial^2 F}{\partial \ell^2} d\ell + \frac{\partial^2 F}{\partial \ell \partial c} dc = dW'(\ell) \]

\[d\ell = \frac{\frac{1}{\partial^2 F}}{\left(\frac{\partial^2 F}{\partial \ell^2} \right)} d[W'(\ell)] - \frac{\partial \ell \partial c}{\partial^2 F} dc. \]

Functional dependence between \(c \) and \(W'(\ell) \) does not necessarily imply linear dependence

\[\therefore \text{we might be able to identify the model. Need shifter in regression. Functional dependence } \not\Rightarrow \text{ linear independence} \]

\[y = \alpha_0 + \alpha_1 X + \alpha_2 X^2. \]

Obviously \(X \) and \(X^2 \) only dependent but not linearly dependent.
\[\ln c = m_0 + \left(\frac{1 - \gamma}{1 - \sigma} \right) \ln c. \]

We get no independent variation. \(\ln W'(\ell) \), \(\ln c \) and \(\ln \ell \) explain each other perfectly (method wrong).

More general principle:

\[
\text{FOC: } \frac{\partial^2 F}{\partial \ell^2} d\ell + \frac{\partial^2 F}{\partial \ell \partial c} dc = dW'(\ell)
\]

\[d\ell = \left(\frac{\partial^2 F}{\partial \ell^2} \right) d[W'(\ell)] - \frac{\partial \ell \partial c}{\partial \ell^2} dc. \]

Functional dependence between \(c \) and \(W'(\ell) \) does not necessarily imply linear dependence

\[\therefore \text{we might be able to identify the model. Need shifter in regression. Functional dependence } \not\Rightarrow \text{ linear independence} \]

\[y = \alpha_0 + \alpha_1 X + \alpha_2 X^2. \]

Obviously \(X \) and \(X^2 \) only dependent but not linearly dependent.