Notes on GMM, MLE and Minimum Distance Estimation Based on Newey-McFadden (1994)

As in previous notes, define an extremum estimator \(\hat{\theta}_n \) as the optimizer of the objective function \(\hat{Q}_n(\theta), \theta \in \Theta \)

(a) MLE
\[
\hat{Q}_n(\theta) = \frac{1}{N} \sum_{i=1}^{N} \ell_n f(y_i \mid \theta)
\]

(b) NLLS
\[
\hat{Q}_n(\theta) = \frac{-1}{N} \sum_{i=1}^{N} (y_i - h(x_i; \theta))^2
\]

(c) GMM

Based on a moment function \(g(y; \theta) \)
\[E[g(y; \theta)]_{\theta=\theta_0} = 0 \]
\[\int g(y; \theta) f(y; \theta_0) dy = 0 \]

Sometimes get exact solutions:
\[\hat{Q}_n(\theta) = \left[-\frac{1}{N} \sum_{i=1}^{N} g(y_i; \theta) \right] \hat{\mathbf{W}} \left[\frac{1}{N} \sum g(y_i; \theta) \right] \]
\(\hat{\mathbf{W}} \) is positive semi definite classical

(d) Minimum distance (CMD)
\[\hat{Q}_n(\theta) = -[\hat{\Pi} - h(\theta)]' \hat{\mathbf{W}} [\hat{\Pi} - h(\theta)] \]
\[\hat{\Pi} \overset{P}{\rightarrow} \Pi \quad h(\theta) \text{ gives mapping from structure to reduced form.} \]
\(\hat{\mathbf{W}} \) positive semifinite.

More general class: CMD
\[\hat{Q}_n(\theta) = -\hat{g}_n(\theta)' \hat{W} \hat{g}_n(\theta) \]

GMM when \(\hat{g}_n = \frac{1}{N} \sum g(y_i; \theta) \)

CMD when \(\hat{g}_n(\theta) = \hat{\Pi} - h(\theta) \)

FOC for Extremum: \(\frac{\partial Q_n}{\partial \theta} = 0 \)

\[\therefore \text{MLE with } \hat{g}_n(\theta) = \frac{\partial Q_n}{\partial \theta}. \]

Observe MLE

\[\int f(y; \theta_0) dy = 0. \]

If you can differentiate under the integral

sign, you have
\[0 = \int \frac{\partial f(y; \theta_0)}{\partial \theta} dy \]

\[0 = \int \left[\frac{\partial \ln f(y; \theta)}{\partial \theta} \right]_{\theta = \theta_0} f(y; \theta_0) dy \]

\[\uparrow \text{score vector:} \]

:. MLE is GMM with \(g(y; \theta) = \frac{\partial \ln f}{\partial \theta} \)

NLS is GMM with

\[g(y; \theta) = -2[y - h(x; \theta)]' \frac{\partial h(x; \theta)}{\partial \theta}. \]

Consistency Theorem for Extremum Estimator given before and Need for Uniform Convergence was given before. Asymptotic normality established as before in terms of expansions of the \(Q \) function.
Asymptotically Linear Estimator:

\[\sqrt{N} (\hat{\theta} - \theta_0) = \sum_{i=1}^{N} \frac{\psi(y_i)}{\sqrt{N}} + o_p(1) \]

\[E(\psi(y_i)) = 0 \quad E(\psi(y_i)\psi(y'_i)) \text{ exists.} \]

\(\psi \) is called influence function; and we have that \(\psi(y_i) \) is score vector transformed. Thus we have that at Max:

\[0 = \frac{\partial Q_N}{\partial \theta} \bigg|_{\theta=\theta_0} + \frac{\partial^2 Q_N}{\partial \theta \partial \theta'}(\hat{\theta}_T - \theta_0) \]

\[\sqrt{N}(\hat{\theta}_N - \theta_0) = - \left(\frac{\partial^2 Q_N}{\partial \theta \partial \theta'} \right)^{-1} \left(\frac{\partial Q_N}{\partial \theta} \right) \sqrt{N} \]

of this form.

Locally Linear. (Observe that \(Q_N \) here
includes \(\frac{1}{N} \) factor; other notes do not therefore normalizations shift around).

Asymptotic normality for an extremum estimator has just been established. (See previous notes).

Asymptotic normality for general minimum distance estimators.

Theorem 1: Suppose \(\hat{\theta}_n = \arg \max \{ -g_n(\theta)' \hat{W} g_n(\theta) \} \) where \(\hat{W} \overset{P}{\to} W \); \(W \) is positive semidefinite; \(\hat{\theta} \overset{P}{\to} \theta_0 \) and (i) \(\theta_0 \in \text{Interior} (\theta) \) (ii) \(\hat{g}_n(\theta) \) is continuous differentiable in \(\text{Nbd} \)
\[
N \text{ of } \theta_0 \left(\hat{G} = \hat{g}_n(\theta) \right)
\]

(iii) \(\sqrt{N} g_N(\theta_0) \overset{d}{\longrightarrow} N(0, \Omega)\)

(iv) \(\exists G'(\theta)\) continuous at \(\theta_0\) and
\[
\sup_{\theta \in N} \left\| \frac{\partial \hat{g}_n(\theta)}{\partial \theta} - G(\theta) \right\| \overset{P}{\longrightarrow} 0
\]

(v) For \(G = G(\theta_0)\), \(G'WG\) is nonsingular.

Then \(\sqrt{N}(\hat{\theta} - \theta_0) \overset{d}{\longrightarrow} N(0, (G'WG)^{-1}G'W\Omega WG(G'WG)^{-1})\)

Proof: Using (i) and (ii), w.p.1 FOC

\[
\hat{G}'(\hat{\theta})' \hat{W} \hat{g}_N(\hat{\theta}) = 0
\]

for \(\hat{G}(\theta) = \frac{\partial g_N(\hat{\theta})}{\partial \theta}\). Expand \(\hat{g}_n(\hat{\theta})\) around \(\theta_0\):

\[
\hat{G}'(\hat{\theta}) \hat{W} \left[\hat{g}_N(\theta_0) + \frac{\partial g_N(\theta_0)}{\partial \theta}(\hat{\theta} - \theta_0) \right] = 0
\]
\[\hat{G}'(\hat{\theta}) \hat{W} [\hat{g}_N(\theta_0) + \hat{G}(') (\hat{\theta} - \theta_0)] = 0 \]

\[\therefore \sqrt{N} (\hat{\theta} - \theta_0) = -\left[\hat{G}'(\hat{\theta}) \hat{W} \hat{G}(\hat{\theta}) \right]^{-1} \sqrt{N} \hat{G}'(\hat{\theta}) \hat{W} \hat{g}_N(\theta_0) \]

\[\hat{G}(\hat{\theta}) \xrightarrow{P} G \quad \hat{G}(\bar{\theta}) \longrightarrow G \]

\[\therefore \text{using Slutsky we get} \]
\[\sqrt{N} (\hat{\theta} - \theta_0) = -\left[G'(\theta) W G(\theta) \right]^{-1} \sqrt{N}(G W g_N(\theta_0)). \]

QED. We did this before with the MLE:

Proof for MLE here.

Applies to GMM:

\[\hat{W} \xrightarrow{P} W \text{ and} \]

(i) \(W\) is positive semidefinite

(ii) \(W \ E(g(y; \theta)) = 0 \iff \theta = \theta_0\)
(iii) \(\theta_0 \in \theta \) compact

(iv) \(g(y; \theta) \) continuous in \(\theta \) at each \(\theta \in \theta \) w.p.1.

(v) \(E[\sup_{\theta \in \theta} || g(y; \theta) ||] < \infty \), then \(\theta \xrightarrow{P} \theta_0 \).

Follow from previous results.

Note: Influence Function for GMM

\[
\psi(y) = -(G'WG)^{-1}G'W g_n(y; \theta_0).
\]

One Step Theorem:

Let \(\bar{\theta} \) be an initial estimator. Let \(\bar{H} \) be a consistent estimator of

\[
H = \text{plim} \left[\frac{\partial^2}{\partial \theta \partial \theta'} \hat{Q}_N(\theta_0) \right]
\]

\[
\tilde{\theta} = \bar{\theta} - \bar{H}^{-1} \frac{\partial \hat{Q}_N(\bar{\theta})}{\partial \theta}.
\]
For $\bar{H} = \frac{\partial^2 Q_N(\tilde{\theta})}{\partial \theta \partial \theta'}$: Newton Raphson Iteration.
Theorem 2: Suppose $\sqrt{N}(\bar{\theta} - \theta_0)$ is bounded in probability and $\tilde{\theta}$ is as defined above and asymptotic normality theorem satisfied (for extremum estimator) and

A. $\bar{H} = \frac{\partial^2 Q_N(\bar{\theta})}{\partial \theta \partial \theta'}$

or

B. $\bar{H} \xrightarrow{P} H$.

Then if

$\sqrt{N}(\bar{\theta} - \theta_0) \xrightarrow{d} N\left(0, \left(E \frac{\partial^2 Q}{\partial \theta \partial \theta'}\right)^{-1} E \left(\frac{\partial Q}{\partial \theta} \frac{\partial Q}{\partial \theta'}\right) E \left(\frac{\partial^2 Q}{\partial \theta \partial \theta'}\right)^{-1}\right)$.

If
\[\tilde{\theta} = \bar{\theta} - (\tilde{G}'WG')^{-1}\tilde{G}'\hat{W}\hat{g}_N(\bar{\theta}) \]

and GMM asymmetric normality satisfied and

either

A. \[\bar{G} = \frac{\partial}{\partial \theta}\hat{g}_N(\bar{\theta}) \]

or

B. \[\bar{G} \xrightarrow{P} G \]

Then

\[\sqrt{N}(\tilde{\theta} - \theta_0) \xrightarrow{d} N(0, (G'WG)^{-1}G'W\OmegaWG(GWG)^{-1}). \]

Proof: Expand \(\frac{\partial Q}{\partial \theta}(\bar{\theta}) \) in nbd of \(\theta_0 \):

\[\tilde{\theta} = \bar{\theta} - \bar{H}^{-1} \left[\frac{\partial Q_N(\theta_0)}{\partial \theta} + \frac{\partial^2 Q(\bar{\theta})}{\partial \theta \partial \theta'}(\bar{\theta} - \theta_0) \right] \]

\[\sqrt{N}(\tilde{\theta} - \theta_0) = \sqrt{N}(\bar{\theta} - \theta_0) \]
\[-\bar{H}^{-1} \frac{\partial^2 Q(\dot{\theta})}{\partial \theta \partial \theta'} \sqrt{N}(\bar{\theta} - \theta_0) - \bar{H}^{-1} \frac{\partial \hat{Q}_N(\theta_0)}{\partial \theta}\]

(\dot{\theta}) is mean value. \(\bar{H} \rightarrow H\)

Second term converges to

\[N \left(0, \left(E \frac{\partial^2 Q}{\partial \theta \partial \theta} \right)^{-1} E \left[\frac{\partial Q}{\partial \theta} \frac{\partial Q'}{\partial \theta} \right] \cdot \left(E \frac{\partial^2 Q}{\partial \theta \partial \theta'} \right)^{-1} \right).\]

But first term is

\[\left[I - \bar{H}^{-1} \frac{\partial^2 Q(\dot{\theta})}{\partial \theta \partial \theta'} \right] \sqrt{N}\]

\((\bar{\theta} - \theta_0) \rightarrow 0.\)

This term is Bounded in Probability

\[\therefore\] asymptotically efficient.
GMM Form:
\[
\sqrt{N}(\hat{\theta} - \theta_0) =
\left[I - (\bar{G}' \hat{W} \bar{G})^{-1} \bar{G}' \hat{W} \frac{\partial g_N(\theta)}{\partial \theta} \right] \cdot \sqrt{N}(\hat{\theta} - \theta_0)
- (\bar{G}' \hat{W} \bar{G})^{-1} \bar{G}' \hat{W} \sqrt{N}(\hat{g}_N(\theta_0))
\]

and first term goes as before.

Asymmetric Efficiency of MLE:

Cramer Rao Lower Bound:
\[
\sqrt{N} (\hat{\theta} - \theta_0)_{\text{MLE}} \sim
N \left(0, \left[E \left(\frac{\partial \ln f}{\partial \theta} \frac{\partial \ln f}{\partial \theta} \right) \right]^{-1} \right)
\]

\[
S = \frac{\partial \ln f}{\partial \theta}
\]
is score vector (for a single observation).
Asymmetric Variance GMM:

\[(E[M_\theta])^{-1} E(M M')(E M'_\theta)^{-1}\]

\[M_\theta = E \left(\frac{\partial g(y; \theta_0)}{\partial \theta} \right) W \frac{\partial g(y; \theta_0)}{\partial \theta}\]

\[M = E \left(\frac{\partial g(y; \theta_0)}{\partial \theta} \right) W g(y; \theta_0)\]

GMM Moment Condition:

\[
\int g(y; \theta) f(y; \theta) dy = 0.
\]

Differentiate under the integral sign:

\[
\int \left[\frac{\partial g(y; \theta)}{\partial \theta} \right] f(y; \theta) dy + \int g(y; \theta) \frac{\partial f(y; \theta)}{\partial \theta} dy = 0
\]

\[E \left[\frac{\partial g(y; \theta)}{\partial \theta} \right]_{\theta_0} + 15\]
\[
\text{COV}\left(g(y; \theta), \frac{\partial \ln f(y; \theta)}{\partial \theta}\right)_{\theta_0} = 0
\]

when \(g(y; \theta) = \frac{\partial \ln f(y; \theta)}{\partial \theta}\) produces

\[
E\left[\frac{\partial^2 \ln f(y; \theta)}{\partial \theta \partial \theta'}\right]_{\theta = \theta_0} = -E\left[\frac{\partial \ln f}{\partial n} \frac{\partial \ln f}{\partial \theta'}\right]_{\theta = \theta_0}.
\]

Thus

\[
E(M_\theta) + E(MS') = 0
\]

(just multiply through by \(E(\nabla_\theta g(y; \theta))'W\)).

Thus difference of GMM and MLE asymptotic variances
\[(E[M_\theta])^{-1}E(MM')[E(M_\theta)]^{-1} - (E[SS'])^{-1}\]

\[
= [E(MS')]^{-1}E(MM')[E(SM')]^{-1} - (E(SS'))^{-1} \\
= [E(MS')]^{-1}[E(MM') - E(MS')] \\
= [E(SS')]^{-1}E(SM')[E(SM')]^{-1} \\
= [E(MS')]^{-1}[E UU']E(SM') \\
U = M - E(MS')[E(SS')]^{-1}S
\]

\[\therefore \text{MLE is efficient within the class of GMM.}\]

Now what is the efficient weight matrix
within OMD framework? Let Z be any random vector such that

$\Omega = E[ZZ']$ define
\[M = G'WZ \]
\[\tilde{M} = G'\Omega^{-1}Z \]

Then
\[G'WG = E(M\tilde{M}') \]
\[G'\Omega^{-1}G = E(\tilde{M}\tilde{M}') \]

Then we have that
\[
(G'WG)^{-1}G'W\OmegaWG(G'WG)^{-1} - (G'\Omega^{-1}G)^{-1} = (G'WG)^{-1}E(UU')(GWG)^{-1}
\]

where
\[U = m - E(M\tilde{M}')[E(\tilde{M}\tilde{M}')]^{-1}\tilde{M} \]

since \((G'\Omega^{-1}G)^{-1}\) is the minimum distance estimator when \(W = \Omega^{-1}\), this is minimal.
Proof:

\[UU' = MM' - M\tilde{M}'[E(\tilde{M}\tilde{M}')]^{-1}E(\tilde{M}M') \]

\[-E(M\tilde{M}')[E(\tilde{M}\tilde{M}')]^{-1}\tilde{M}M' \]

\[+ E(M\tilde{M}')[E(\tilde{M}\tilde{M}')]^{-1}(\tilde{M}\tilde{M}') \cdot \]

\[(E(\tilde{M}\tilde{M}'))^{-1}E(\tilde{M}'M) \]

\[E(UU') = \]

\[(G'W'\Omega WG) - (G'WG)(G'\Omega^{-1}G)^{-1}G'WG. \]

Rest follow

\[U \text{ is residual of } G'WZ \text{ on a regression of } G'WZ \text{ on } G'\Omega^{-1}Z. \]

Applications: \(\hat{g}(\theta) = \hat{\pi} - \pi(\theta) \) efficient
weighting matrix is inverse of asymptotic variance of π.

GMM:

$$\hat{g}(\theta) = \frac{1}{N} \sum_{i=1}^{N} g(y_i; \theta)$$ efficient weighting matrix:

$$W^{-1} = \Omega$$

$$\Omega = E(g(y; \theta)g'(y; \theta)).$$

Applications:

Direct Argument: GMM

$$\frac{1}{\sqrt{N}} \sum g(y; \theta) \xrightarrow{d} N(0, \Omega_0)$$

weighting matrix $\{a_N\} \xrightarrow{P} a$

g has continuous first derivative.

$$G = E \left[\frac{\partial g(y; \theta)}{\partial \theta} \right]$$ is well defined.
Taylor Expansions:

\[
0 = \frac{1}{\sqrt{N}} \sum g(y; \hat{\theta}) = \frac{1}{\sqrt{N}} \sum_{n=1}^{N} g(y; \theta_0) \\
+ \frac{1}{N} \sum_{n=1}^{N} \frac{\partial g(y; \bar{\theta})}{\partial \theta}[(\theta - \theta_0) \sqrt{N}].
\]

Multiply both sides by \(a_N\) (nonsingular)

\[
a_N \frac{1}{\sqrt{N}} \sum_{n=1}^{N} g(y; \hat{\theta}) = 0
\]

call \(G_N = \left(\frac{1}{N} \sum_{n=1}^{N} \frac{\partial g(y; \bar{\theta})}{\partial \theta} \right)\)

\[
\therefore 0 = a_N
\]

\[
\frac{1}{\sqrt{N}} \sum g(y; \theta_0) + a_N G_N (\hat{\theta} - \theta_0) \sqrt{N}
\]

\[
\sqrt{N}(\hat{\theta} - \theta_0) a_N = -(a_N G_N)^{-1} a_N
\]

\[
\frac{1}{\sqrt{N}} \sum_{n=1}^{N} g(y; \theta_0)
\]

22
\[\sqrt{N}(\hat{\theta} - \theta_0)_{aN} \xrightarrow{d} N(0; (aG')^{-1}a\Omega_0a'(aG')^{-1}). \]

We seek to minimize the asymptotic variance

\[\text{Min} [(a'G)^{-1}]'a \Omega_0a'(aG)^{-1}. \]

We can always choose \(a \) so that \(aG = I \) (this is a nonsingular matrix)

:. reformulate problem multiply by a nonsingular matrix

\[\text{Min} a\Omega_0 a' + \lambda(I - G'a') \]

FOC:

\[a\Omega_0 = \lambda G'' \]

\[a = \lambda G''\Omega_0^{-1} \]

\[I = aG = \lambda G''\Omega_0^{-1}G \]

23
\[a^* = (G'\Omega_0^{-1}G)^{-1}G'\Omega_0^{-1} \]

so with this choice of weight matrix, we obtain
\[\sqrt{N}(\hat{\theta} - \theta_0)_{a^*} \overset{d}{\rightarrow} N(0, (G'\Omega_0^{-1}G)^{-1}). \]

Now take any other weight matrix with
\[aG = I \]
\[\sqrt{N}(\hat{\theta} - \theta_0)_a = N(0, a\Omega_0 a') \]
\[(a\Omega_0 a') - (G'\Omega_0^{-1}G)^{-1} = a\Omega_0. \]

Verification is a form of Gauss Markov Theorem.

Observe that
\[\sqrt{N} (\hat{\theta}_a - \theta_0) = a \sqrt{N} G \]
\[\sqrt{N} (\hat{\theta}_{a^*} - \theta_0) = a^* \sqrt{N} G \]
\[
\sqrt{N} (\hat{\theta}_a - \hat{\theta}_{a^*}) = (a - a^*) \sqrt{N} G \\
\text{Var}(\sqrt{N} (\hat{\theta}_a - \hat{\theta}_{a^*})) = (a - a^*) v_0 (a - a^*)'
\]

Observe that cross terms have special property:

\[
a \Omega_0 (a^*)' = a \Omega_0 (\Omega_0^{-1})' G (G' v_0^{-1} G)^{-1} \\
= (aG) = (aG) (G' \Omega_0^{-1} G)^{-1} \\
= (G' \Omega_0^{-1} G) = a^* \Omega_0 a^* \\
\therefore (a - a^*) \Omega_0 (a - a^*)' = a \Omega_0 a' - a^* \Omega_0 (a^*)'
\]

But this is now negative. \therefore variance is bigger for anything but \(a^*\).

IV Example:

\[
Y_t = X_t' \beta_0 + U_t \\
1 \times K \\
K \times 1 \\
25
\]
\[E(Z_t'U_t) = 0 \]

IV Condition:

\[g_t = Z_t'(y_t - X_t\beta) = 0 \quad \int \iff \beta = \beta_0 \]

\[G_t = -E(Z_t'X_t') \]

\[G = \frac{-1}{T} \sum_{t=1}^{T} Z_t'X_t' \]

\[\Omega = \text{Var} \left(\frac{\sum Z_tU_t}{\sqrt{T}} \right) = \frac{1}{T} \sum \sigma_t^2 Z_tZ_t' \]

if \(U_t \) is i.i.d mean zero we have that

\[W_T = \frac{1}{T} \sum_{t=1}^{T} \sigma_t^2 Z_tZ_t'. \]

\[a_T = \left(\frac{1}{T} \sum Z_tX_t' \right)^{-1} \left(\frac{1}{T} \sum_{t=1}^{T} Z_tZ_t'\sigma_t^2 \right)^{-1}. \]

IV estimator defined from estimation
equation:

\[
\frac{1}{T} \left(\sum_{t=1}^{T} Z_t X'_t \right)^{-1} \left(\frac{1}{T} \sum_{t=1}^{T} Z_t Z'_t \sigma_t^2 \right)^{-1} \left(\sum_{t=1}^{T} Z_t (y_t - X_t \hat{\beta}_{IV}) \right) = 0
\]

just ordinary IV Equation. Nonlinear IV

g_T(\beta)(W_T)^{-1}g_T(\beta).

Numerical Solutions: 2 Stage Estimation:

GMM Estimator:

\[(*) \frac{1}{N} \sum_{i=1}^{N} g(y_i, \theta, \hat{\gamma}) = 0 \]

\(\hat{\gamma} \) is a first step estimator. Obtained from
\[(** \) \] \[\frac{1}{N} \sum_{i=1}^{N_1} M(y_i; \gamma) = 0 \]

(assume same number of moments as regressor)

\[\tilde{g} = [M(y, \gamma)'g(y, \theta, \gamma)']' \]

Stack: \[\frac{1}{N} \sum \tilde{g}(y_i, \hat{\theta}, \hat{\gamma}) = 0. \]

Let

\[G_\theta = E \left[\frac{\partial g(y, \theta, \gamma)}{\partial \theta} \right]_{\theta_0, \gamma_0} = 0 \]

\[G_\gamma = E \left[\frac{\partial g(y, \theta, \gamma)}{\partial \gamma} \right]_{\theta_0, \gamma_0} \]

\[g(y) = g(y, \theta_0, \gamma_0) \]

\[\bar{M} = E \left[\frac{\partial M(y, \gamma)}{\partial \gamma} \right]_{\gamma=\gamma_0} \]

\[\psi(y) = \bar{M}^{-1}M(y, \theta_0). \]

28
Theorem 3: If (*) and (**) are satisfied with probability approaching 1, $\hat{\theta} \xrightarrow{P} \gamma_0$, $\hat{\gamma} \xrightarrow{P} \gamma_0$ and \tilde{g} satisfies conditions stated above for consistency of GMM, then $\hat{\theta}$ and $\hat{\gamma}$ are asymptotically normal. Let $N = N$, then

$$\sqrt{N}(\hat{\theta} - \theta_0) \xrightarrow{d} N(0, V)$$

$$V = G_0^{-1}E\{[g(y) + G_\gamma \psi(y)]'(G_0^{-1})'\}.$$

Proof: $\hat{\theta}, \hat{\gamma}$ is a GMM estimator with moment functions:

$$\tilde{g}(y, \theta, \gamma) = [M(y, \gamma)'g(y, \theta, \gamma)']\hat{W} = I.$$

$$(\tilde{G}'I\tilde{G})^{-1}\tilde{G}' = \tilde{G}^{-1}.$$
Asymmetric variance of estimator

\[
(\tilde{G}'I\tilde{G})^{-1}\tilde{G}'IE[\tilde{g}(y, \theta_0, \gamma_0)\tilde{g}(y, \theta_0, w)](I\tilde{G})(\tilde{G}'I\tilde{G})^{-1}
= \tilde{G}^{-1} E[\tilde{g}(y, \theta_0, \gamma_0)\tilde{g}(y, \theta_0, \gamma_0)'(\tilde{G}^{-1})']
\]

where

\[
\tilde{G} = E \left[\frac{\partial \tilde{g}(y, \gamma_0, \theta_0)}{\partial \theta' \partial \gamma'} \right] = \begin{bmatrix} G_\theta & G_\gamma \\ 0 & \bar{M} \end{bmatrix}
\]

\[
\tilde{G}^{-1} = \begin{bmatrix} G_\theta^{-1} & -G_\gamma^{-1} G_\gamma \bar{M}^{-1} \\ 0 & \bar{M}^{-1} \end{bmatrix}.
\]

Observe that the first row of \(\tilde{G}\) is

\[
G_\theta^{-1}[I, -G_\gamma \bar{M}^{-1}] \text{ now}
\]

\[
E[\tilde{g}(y, \theta_0, \gamma_0)\tilde{g}(y, \theta_0, \gamma_0)'] = [I, -G_\gamma \bar{M}^{-1}][\tilde{g}]
\]

\[
= g(y) + G_\gamma \psi(y)
\]

from partitional increase.