Accounting For Heterogeneity, Diversity and General Equilibrium
In Evaluating Social Programs

James J. Heckman
University of Chicago and the American Bar Foundation

January 20, 1999
Revised, November, 2001
I. Alternative Criteria for Evaluating Social Programs

Outcome for person i in the presence of policy $j = Y_{ji}$

Personal preferences for outcome vector $Y = U_i(Y)$

$Y_{ji} =$ the flow of resources to i under policy j.

2
Criteria

(I-1) \(W(j) = W(U_1(Y_{j1}), ..., U_N(Y_{jN})) \).

(I-2) \(B(j) = \sum_{i=1}^{N} U_i(Y_{ji}) \)

(I-3) \(CB(j) = \sum_{i=1}^{N} Y_{ji} \)

(I-4) \(PB(j | j, k) = \frac{1}{N} \sum_{i=1}^{N} 1(U_i(Y_{ji})) \geq U_i(Y_{ki})) \)

(I-5) \(F(\Delta_{jk} | Y_k = y_k, y_k \leq y) \)
(I-6) $\Pr (\Delta_{jk} > 0|Y_k \leq y)\\
Y_{ji} \geq y \quad \text{for } i \in S,\\
Y_{ji} \geq Y_{ki} \quad \text{for } i \in S.\\
I_i = \text{the information set available to agent } i,$
Adding Uncertainty

\((Y_j, Y_k)\) as perceived by agent \(i\).

\[E(U_i(Y_j) | I_i) > E(U_i(Y_k) | I_i).\]

Proportion of people who prefer \(j\) is

\[(I-7) PB(j|j,k) = \int 1(E(U(Y_j|\theta)|I) > E(U(Y_k|\theta)|I))dF(\theta,I).\]

If

\[I_i = (Y_{ji}, Y_{ki}),\] so there is no uncertainty about \(Y_j\) and \(Y_k\),

\[(I-8) PB(j|j,k) = \int 1(U(y_j;\theta) > U(y_k;\theta))dF(\theta,y_j,y_k).\]
Ex post “satisfaction’:

(I-9) \(U_i(Y_{ji}) > E(U_i(Y_{ki}) \mid I_{it}) \).
II. The Data Needed to Evaluate the Welfare State

(II-1) \((Y_{ji}, Y_{ki})\) 1 = 1, ..., I.

Domain of Treatment Effect Literature

Eligible person \(i\) in regime \(j\) has two potential outcomes: \((Y_{ji}^0, Y_{ji}^1)\). A crucial identifying assumption

(A-1) \(Y_{ji}^0 = Y_{0i}\).

Thus we can evaluate \(j\) vs. \(k\) for \(k = 0\).
III. What Can Be Learned From Micro Data and Social Experiments?

We observe $$(Y^0_i, Y^1_i)$$

Cannot form

$$\Delta_i = Y^1_i - Y^0_i$$ for anyone.

$$D_i = 1$$ if person i is a direct participant,

$$D_i = 0$$ if person i is not a direct participant.
$$Y_i = D_i Y_{i1} + (1 - D_i) Y_{i0}$$

The potential outcomes

(III-1) $Y_{i0} = \mu_0 + \varepsilon_{0i}$

(III-2) $Y_{i1} = \mu_1 + \varepsilon_{1i}$

$$E(\varepsilon_0) = E(\varepsilon_1) = 0.$$

(III-3) $Y_1 = \mu_0 + (\mu_1 - \mu_0 + \varepsilon_{1i} - \varepsilon_{0i}) D_i + \varepsilon_{0i}$

$$E(Y_1 - Y^0)$$

$$E(Y_1 - Y^0 \mid D = 1)$$
Two Parameters

(C-1): $\varepsilon_{1i} = \varepsilon_{0i}$ so $\Delta_i = \Delta$

(No response heterogeneity given X)

or

(C-2): $E(\varepsilon_{1i} - \varepsilon_{0i} \mid D_i = 1) = 0$

(Agents do not enter the program based on gains from it).

(C-3): $E(\varepsilon_{1i} - \varepsilon_{0i} \mid D_i = 1) \neq 0$
Three Regression Models:

(A) \(Y_i = \alpha_0 + \alpha_1 D_i + U_i, \quad E(U_i) = 0. \)

(B) \(Y_i = \alpha_0 + \alpha_1_i D_i + U_i, \quad E(U_i) = 0 \)

where

\[E(\alpha_{1i}) = \mu_1 - \mu_0 \]

but \(V_i = \alpha_{1i} - E(\alpha_{1i}) = \varepsilon_{1i} - \varepsilon_{0i} \)

satisfies \(E(V_i \mid D_i = 1) = 0 \)

equivalently \(E(\varepsilon_{1i} - \varepsilon_{0i} \mid D_i = 1) = 0. \)
(C) $Y_i = \alpha_0 + \alpha_1 D_i + U_i, \quad E(U_i) = 0$

$$E(V_i \mid D_i = 1) \neq 0 \neq E(\varepsilon_{1i} - \varepsilon_{0i} \mid D = 1).$$
Know

\[F(y^1 \mid D = 1) \text{ and } F(y^0 \mid D = 1) \]

Don’t Know

\[F(y^0, y^1 \mid D = 1) \]
Information From Revealed Preference

(III-4)

\[D = 1(Y^1 \geq Y^0), \]

The Problem of Recovering Joint Distributions

Treatment Outcome: \(F(y^1|D = 1) \)

\[Y^1 \sim \begin{pmatrix} Y^1_{(1)} \\ \vdots \\ Y^1_{(N)} \end{pmatrix} \]

Non-Treatment Outcome: \(F(y^0|D = 1) \)

\[Y^0 \sim \begin{pmatrix} Y^0_{(1)} \\ \vdots \\ Y^0_{(N)} \end{pmatrix} \]

\[\Delta \sim Y^1 - \prod_{\ell} Y^0 \quad \ell = 1, \ldots, N! \]
IV. Evidence on Impact Heterogeneity and the Value of Self-Assessments and Revealed Preference Information

Evidence on Heterogeneity
Assuming the Gain Is Independent of the Base

\[R = 1 \text{ if Randomized In; } R = 0 \text{ if Randomized Out} \]

\[Y = RY^1 + (1 - R)Y^0 = \alpha_0 + \alpha_1R_i + \varepsilon_0 \]

\[Y_i = \alpha_0 + \bar{\alpha}_1R_i + V_iR_i + \varepsilon_0 \]

where \(E(V_iR_i + \varepsilon_0) = 0 \).
Testing For Ex Ante Stochastic Rationality of Participants

\[(\text{IV-1}) \int_{0}^{\alpha} F_1(y^1|D=1)dy^1 < \int_{0}^{\alpha} F_0(y^0|D=1)dy^0\]

for all \(\alpha \in R_+\).

Evidence from Self-Assessments of Program Participants

Summary of the Evidence on Impact

Heterogeneity and Its Consequences
V. Accounting For General Equilibrium and Heterogeneity in Evaluating Human Capital Policies

A Dynamic General Equilibrium Model of Human Capital Accumulation with Heterogeneous Agents

Individuals live for \bar{a} years and retire after

$a_R \leq \bar{a}$ years.

- K_{at}: Stock of physical capital at time t.
- H_{at}^S: Is the stock of human capital at time t of type S at age a.
- C_{at}: Consumption
- I_{at}^S: For each schooling level.
(V-1) \[V_{at}(H_{at}^S, K_{at}, S) = \]
\[\max_{C_{at}, I_{at}^S} \frac{C_{at}^\gamma - 1}{\gamma} + \delta V_{a+1,t+1}(H_{a+1,t+1}^S, K_{a+1,t+1}, S) \]

(V-2) \[K_{a+1,t+1} \leq K_{a,t}(1 + (1 - \tau_k)r_t) \]
\[+ R_t^S H_{at}^S(1 - I_{at}^S) - \tau_l (R_t^S H_{at}^S(1 - I_{at}^S)) - C_{at} \]

(V-3) \[H_{a+1,t+1}^S = A^S(\theta) I_{at}^{\alpha_S} H_{at}^{\beta_S} + (1 - \sigma^S) H_{at}^S \]

(V-4) \[\hat{S} = \operatorname{Argmax}_{S} [V^S(\theta) - D^S + \varepsilon^S] \]
\[
F(\bar{H}_t^1, \bar{H}_t^2, \bar{K}_t) =
\begin{align*}
a_3 & \left(a_2 \left(a_1 (\bar{H}_t^1)^{\rho_1} + (1 - a_1)(\bar{H}_t^2)^{\rho_1} \frac{\rho_2}{\rho_1} \right) + (1 - a_2) \bar{K}_t^{\rho_2} \right)^{1/\rho_2}.
\end{align*}
\]

HLT estimate that \(\rho_2 = 0 \) but \(\rho_1 = .693 \).
Tax Effects on Human Capital Accumulation
Analyzing Two Tax Reforms

General-Equilibrium Treatment Effects: A Study of Tuition Policy

Conventional Models of Treatment Effects

The treatment effect for person \(i \) is

\[\Delta_i = Y_i^1 - Y_i^0. \]

Exploring Increases in Tuition Subsidies

in a General-Equilibrium Model

VI. Summary and Conclusions
Appendix A

The Relationship Between The Requirements of Cost-Benefit Analysis and The Information Produced From Social Experiments and The Microeconometric “Treatment Effect” Literature

Policy j

$(D_j = 1$, for program participation$)$ or

not $(D_j = 0)$,

program intensity variables φ_j

defined under policy j

22
Policy “0” is no intervention

\(Y^1_{ji} \) and \(Y^0_{ji} \)

direct participation (\(D_j = 1 \))

direct non-participation (\(D_j = 0 \))

\(c_j(\varphi_j) = \) the social cost of \(\varphi_j \)

\(\varphi_j = 0, c_j(0) = 0. \)

\(N_1(\varphi_j) \) be the number of direct program participants and \(N_0(\varphi_j) \)

\[
N_1(\varphi_j)E(Y^1_j \mid D(\varphi_j) = 1, \varphi_j) + \]
\[
N_0(\varphi_j)E(Y^0_j \mid D(\varphi_j) = 0, \varphi_j) - c(\varphi_j)
\]

\(N_1(\varphi_j) + N_0(\varphi_j) = \bar{N}. \)
The change in output in response to a marginal increase in the policy

\[M(\varphi_j) = \frac{\partial N_1(\varphi_j)}{\partial \varphi_j} \left[\frac{E(Y_j^1|D_j(\varphi_j) = 1, \varphi_j)}{-E(Y_j^0|D_j(\varphi_j) = 0, \varphi_j)} \right] \\
+ N_1(\varphi_j) \left[\frac{\partial E(Y_j^1|D(\varphi_j) = 1, \varphi_j)}{\partial \varphi_j} \right] \\
+ N_0(\varphi_j) \left[\frac{\partial E(Y_j^0|D(\varphi_j) = 0, \varphi_j)}{\partial \varphi_j} \right] \\
- c'_j(\varphi_j). \]
If marginal program intensity changes under policy regime j have no effect on intra-sector mean output:

(a) $\frac{\partial N_1 (\varphi_j)}{\partial \varphi_j}$
the number of people induced into program j by the change in φ_j,

(b) $E (Y_j^1|D_j(\varphi_j) = 1, \varphi_j) - E (Y_j^0|D_j(\varphi_j) = 0, \varphi_j)$
the mean output difference between participants and nonparticipants.

(c) $c'_j(\varphi_j)$
the direct social marginal cost of policy j at program intensity level φ_j.

Nowhere on this list are the parameters that receive the most attention in the micro econometric policy evaluation literature.
(a) $E \left(Y_{j1}^1 - Y_{j0}^0 \mid D_j(\varphi_j) = 1, \varphi_j \right)$
 “the effect of treatment on the treated”
 for persons in regime j at policy intensity φ_j

(b) $E \left(Y_{j1}^1 - Y_{j0}^0 \mid \varphi_j = \bar{\varphi} \right)$
 where $\varphi_j = \bar{\varphi}$ sets $N_1(\bar{\varphi}) = \bar{N}$. This is
 the effect of universal direct participation
 in program j compared to universal
 nonparticipation in j at level of program
 intensity $\bar{\varphi}$.

(c) $E \left(Y_{j1}^1 - Y_{j0}^0 \mid \varphi_j \right)$
 The effect of randomly selecting someone
 for direct treatment and forcing their
 compliance with this treatment compared
 to their position in the no participation state
 under policy j at program intensity level
 φ_j.
Net utility from participating in the program is

\[U_j = X + k(\varphi_j), \text{ where } k \text{ is monotonic in } \varphi_j \]

\((Y_j^1, X) \) and \((Y_j^0, X) \) are \(F(y_j^1, X) \) and \(F(y_j^0, X) \)

Roy model, \(X = Y_j^1 - Y_j^0 \) and \(k = 0 \).

\[D_j(\varphi_j) = 1(U_j \geq 0) = 1(X \geq -k(\varphi_j)) \]

\[N_1(\varphi_j) = \bar{N} \Pr (U_j \geq 0) = \bar{N} \int_{-k(\varphi_j)}^{\infty} f(x) \, dx \]

\[N_0(\varphi_j) = \bar{N} \Pr (U_j < 0) = \bar{N} \int_{-\infty}^{-k(\varphi_j)} f(x) \, dx. \]
Total Output:

\[
\tilde{N} \int_{-\infty}^{\infty} y^1 \int_{-k(\varphi_j)}^{\infty} f (y^1, x | \varphi_j) \, dx \, dy^1 \\
+ \tilde{N} \int_{-\infty}^{\infty} y^0 \int_{-\infty}^{-k(\varphi_j)} f (y^0, x | \varphi_j) \, dx \, dy^0 - c_j (\varphi_j)
\]
\begin{align*}
M(\varphi_j) &= \tilde{N}k'(\varphi_j) f_x(-k(\varphi_j)) \\
&+ \tilde{N} \begin{bmatrix}
E(Y_j^1|D(\varphi_j) = 1, X = -k(\varphi_j), \varphi_j) \\
-E(Y_j^0|D(\varphi_j) = 0, X = -k(\varphi_j), \varphi_j)
\end{bmatrix} \\
&\quad + \int_{-\infty}^{\infty} y^1 \int_{-k(\varphi_j)}^{\infty} \frac{\partial f(y^1, x|\varphi_j)}{\partial \varphi_j} \, dx \, dy^1 \\
&\quad + \int_{-\infty}^{\infty} y^0 \int_{-\infty}^{-k(\varphi_j)} \frac{\partial f(y^0, x|\varphi_j)}{\partial \varphi_j} \, dx \, dy^0 \\
&\quad - c'_j(\varphi_j),
\end{align*}

where \(f_x \), the marginal density of \(X \), is evaluated at

\(X = -k(\varphi_j) \). Marginal entry condition:

\(X = -k(\varphi_j) \).

Effect of treatment on the treated \((X = -k(\varphi_j))\).
\[E (Y_j^1 | D_j(\varphi_j) = 1, X = -k(\varphi_j), \varphi_j) \]
\[-E (Y_j^0 | D_j(\varphi_j) = 0, X = -k(\varphi_j), \varphi_j) \]
\[= E (Y^1 - Y^0 | D(\varphi_j) = 1, X = -k(\varphi_j), \varphi_j). \]
Set \(X = -k(\varphi_j) \), the indifference set for this problem.

\[
E(Y^1_j - Y^0_j \mid D_j(\varphi_j) = 1, X, \varphi_j),
\]

\[
A(\varphi_j) = \left\{ N_1(\varphi_j)E(Y^1_j \mid D_j(\varphi_j) = 1, \varphi_j) + N_0(\varphi_j)E(Y^0_j \mid D_j(\varphi_j) = 0, \varphi_j) \right. \]
\[
\left. -c_j(\varphi_j) - \bar{N}E(Y_0 \mid \varphi_0) \right\}
\]
(AA-1) \(E(Y_j^0 \mid D_j(\varphi_j) = 0, \varphi_j) = E(Y_0 \mid D_j(\varphi_j) = 0, \varphi_0) \)

and

(AA-2) \(E(Y_j^0 \mid D_j(\varphi_j) = 1, \varphi_j) = E(Y_0 \mid D_j(\varphi_j) = 1, \varphi_0) \)

(A-2) \(\Pr(D_j = 1 \mid \varphi_j, \varphi_0) = \Pr(D_j = 1 \mid \varphi_j) \)

\(E(Y^0 \mid \varphi_0) = E(Y_0 \mid D_j(\varphi_j) = 1, \varphi_0) \Pr(D_j(\varphi_j) = 1 \mid \varphi_j) \)

\(+ E(Y_0 \mid D_j(\varphi_j) = 0, \varphi_0) \Pr(D_j(\varphi_j) = 0 \mid \varphi_j) \).
\[E(Y^0 | \varphi_0) = E(Y^0_j | D_j(\varphi_j) = 1, \varphi_j) \Pr(D_j(\varphi_j) = 1 | \varphi_j)\]

\[+ E(Y^0_j | D_j(\varphi_j) = 0, \varphi_j) \Pr(D_j = 0 | \varphi_j).\]

\[\text{(AA-3) } A(\varphi_j) = N(\varphi_j) E(Y^1_j - Y^0_j | D_j(\varphi_j) = 1, \varphi_j) - c_j(\varphi_j).\]