Econ 311: Ability Bias, Errors in variables and Sibling Methods

Instructor: James J. Heckman
Room: Harper 130
Time: M,W,F 1:30-2:50 PM

1 Ability Bias

Consider the model:

\[\log y_{it} = \alpha_0 + \alpha_1 S_i + U_{it} \]

where \(y_{it} = \) income, \(S_i = \) schooling, and \(\alpha_0 \) and \(\alpha_1 \) are parameters of interest. What we have omitted from the above specification is unobserved ability, which is captured in the residual term \(U_{it} \). We thus re-write the above as:

\[\log y_{it} = \alpha_0 + \alpha_1 S_i + a_i + \varepsilon_{it} \]

where \(a_i \) is ability, \((\varepsilon_{it}, \varepsilon_{i't}) \perp (S_i, S_{i'}) \), and we believe that \(\text{Cov}(a_i, S_i) \neq 0 \). Thus, \(E(U_{it} | S_i) \neq 0 \), so that OLS on our original specification gives biased and inconsistent estimates.

1.1 Strategies for Estimation

(i) Use proxies for ability: Find proxies for ability and include them as regressors. Examples may include: height, weight, etc. The problem with this approach is that proxies may measure ability with error and thus introduce additional bias (See section 1.3).

(ii) Fixed Effect Method: Find a paired comparison. Examples may include a genetic twin or sibling with similar or identical ability. Consider two individuals \(i \) and \(i' \):

\[
\begin{align*}
\log y_{it} - \log y_{i't} &= (\alpha_0 + \alpha_1 S_i + U_{it}) - (\alpha_0 + \alpha_1 S_{i'} + U_{i't}) \\
&= \alpha_1 (S_i - S_{i'}) + (a_i - a_{i'}) + (\varepsilon_{it} - \varepsilon_{i't})
\end{align*}
\]
Note: if $a_i = a_i'$, then OLS performed on our fixed effect estimator is biased and consistent. If $a_i \neq a_i'$, then we just get a different bias (See 1.2). Further, if S_i is measured with error, we may exacerbate the bias in our fixed effect estimator (See section 1.3).

1.2 OLS vs. Fixed Effect (FE)

In the OLS case with ability bias, we have:

$$\text{plim}(\alpha_1^{OLS}) = \alpha_1 + \frac{Cov(a, S)}{Var(S)}$$

(See derivation of equation 2.2 for more background on the above derivation). We also impose:

$$Var(S) = Var(S')$$
$$Cov(a, S) = Cov(a', S')$$
$$Cov(a', S) = Cov(a, S')$$

With these assumptions, our fixed effect estimator is given by:

$$\text{plim} \alpha_1^{FE} = \alpha_1 + \frac{Cov(S - S', (a - a') + (\varepsilon - \varepsilon'))}{Var(S - S')}$$
$$= \alpha_1 + \frac{Cov(a, S) - Cov(a', S)}{Var(S) - Cov(S, S')}.$$

Note that if $Cov(a', S) = 0$, and ability is positively correlated with schooling, then the fixed effect estimator is upward biased. From the preceding, we see that the fixed effect estimator has more asymptotic bias if:

$$\frac{Cov(a, S) - Cov(a', S)}{Var(S) - Cov(S, S')} > \frac{Cov(a, S)}{Var(S)}$$
$$\implies \frac{Cov(a, S)}{Var(S)} > \frac{Cov(a', S)}{Cov(S, S')}.$$
1.3 Measurement Error

Say \(S^* = S + \nu \), where \(S^* \) is observed schooling. Our model now becomes:

\[
\log y = \alpha_0 + \alpha_1 S + U = \alpha_0 + \alpha_1 S^* + (a + \varepsilon - \alpha_1 \nu)
\]

and the fixed effect estimator gives:

\[
\log y - \log y' = (\alpha_0 + \alpha_1 S + U) - (\alpha_0 + \alpha_1 S' + U') = \alpha_1 (S^* - S') + (U - U') + \alpha_1 (\nu' - \nu)
\]

Now we wish to examine which estimator (OLS or fixed effect), has more asymptotic bias given our measurement error problem. For the remaining arguments of this section, we assume:

\[
E(\nu | S) = E(\nu' | S) = E(\nu | \nu') = 0
\]

so that the OLS estimator gives:

\[
\text{plim}_1 \alpha_{OLS} = \alpha_1 + \frac{\text{Cov}(S^*, a + \varepsilon - \alpha_1 \nu)}{\text{Var}(S^*)} = \alpha_1 + \frac{\text{Cov}(a, S) - \alpha_1 \text{Var}(\nu)}{\text{Var}(S) + \text{Var}(\nu)}
\]

The fixed effect estimator gives:

\[
\text{plim}_1 \alpha_{FE} = \alpha_1 + \frac{\text{Cov}((S^* - S'), (U - U')) + \alpha_1 (\nu' - \nu))}{\text{Var}(S^* - S')} = \alpha_1 + \frac{\text{Cov}((S - S'), (a - a')) - \alpha_1 \text{Var}(\nu' - \nu))}{\text{Var}(S - S') + \text{Var}(\nu' - \nu)} = \alpha_1 + \frac{\text{Cov}(a, S) - \text{Cov}(a, S') - \alpha_1 \text{Var}(\nu)}{\text{Var}(S) + \text{Var}(\nu) - \text{Cov}(S', S)}
\]

Under what conditions will the fixed effect bias be greater? From the above,
we know that this will be true if and only if:

\[
\frac{\text{Cov}(a, S) - \text{Cov}(a, S') - \alpha_1 \text{Var}(\nu)}{\text{Var}(S) + \text{Var}(\nu) - \text{Cov}(S', S)} > \frac{\text{Cov}(a, S) - \alpha_1 \text{Var}(\nu)}{\text{Var}(S) + \text{Var}(\nu)}
\]

\[
\Rightarrow \quad \text{Cov}(a, S') (\text{Var}(S) + \text{Var}(\nu)) > (\alpha_1 \text{Var}(\nu) - \text{Cov}(a, S)) \text{Cov}(S', S)
\]

\[
\Rightarrow \quad \frac{\text{Cov}(a, S) - \alpha_1 \text{Var}(\nu)}{\text{Var}(S) + \text{Var}(\nu)} > \frac{\text{Cov}(a, S')}{\text{Cov}(S', S)}.
\]

If this inequality holds, taking differences can actually worsen the fit over OLS alone. Intuitively, we see that we have differenced out the true component, \(S \), and compounded our measurement error problem with the fixed effect estimator.

2 Errors in Variables

2.1 The Model

Suppose that the equation for earnings is given by:

\[
Y_t = X_{1t}\beta_1 + X_{2t}\beta_2 + U_t
\]

where \(E(U_t \mid X_{1t}, X_{2t}) = 0 \ \forall \ t, t' \). Also define:

\[
X_{1t}^* = X_{1t} + \varepsilon_{1t} \quad \text{and} \quad X_{2t}^* = X_{2t} + \varepsilon_{2t}.
\]

Here, \(X_{1t}^* \) and \(X_{2t}^* \) are observed and measure \(X_{1t} \) and \(X_{2t} \) with error. We also impose that \(X_i \perp \varepsilon_j \ \forall \ i, j \). So, our initial model can be equivalently re-written as:

\[
Y_t = X_{1t}^*\beta_1 + X_{2t}^*\beta_2 + (U_t - \varepsilon_{1t}\beta_1 - \varepsilon_{2t}\beta_2).
\]

Finally, by assumed independence of \(X \) and \(\varepsilon \), we write:

\[
\Sigma_{x^*} = \Sigma_x + \Sigma_{\varepsilon}.
\]

2.2 McCallum’s Problem

Question: Is it better for estimation of \(\beta_1 \) to include other variables measured with error? Suppose that \(X_{1t} \) is not measured with error, in the sense that
$\varepsilon_{1t} = 0$, while X_{2t} is measured with error. In 2.2.1 and 2.2.2 below, we consider both excluding and including X_{2t}, and investigate the asymptotic properties of both cases.

2.2.1 Excluded X_{2t}

The equation for earnings with omitted X_2 is:

$$y = X_1 \beta_1 + (U + X_2 \beta_2)$$

Therefore, by arguments similar to those in the appendix, we know:

$$\text{plim} \hat{\beta}_1 = \beta_1 + \frac{\sigma_{12}}{\sigma_{11}} \beta_2.$$ (2.1)

Here, σ_{12} is the covariance between the regressors, and σ_{11} is the variance of X_1. Before moving on to a more general model for the inclusion of X_{2t}, let us first consider the classical case for including both variables. Suppose:

$$\Sigma_\epsilon = \begin{bmatrix} \sigma_{11}^* & 0 \\ 0 & \sigma_{22}^* \end{bmatrix}, \Sigma_x = \begin{bmatrix} \sigma_{11} & 0 \\ 0 & \sigma_{22} \end{bmatrix}.$$

We know that:

$$\text{plim} \hat{\beta} = \left[I - (\Sigma_x^*)^{-1} (\Sigma_\epsilon) \right] \beta$$ (2.2)

where the coefficient and regressor vectors have been stacked appropriately (see Appendix for derivation). Note that Σ_ϵ represents the variance-covariance matrix of the measurement errors, and Σ_x is the variance-covariance matrix of the regressors. Straightforward computations thus give:

$$\text{plim} \hat{\beta} = \left[I - \begin{bmatrix} \sigma_{11} + \sigma_{11}^* & 0 \\ 0 & \sigma_{22} + \sigma_{22}^* \end{bmatrix} \right]^{-1} \begin{bmatrix} \sigma_{11}^* & 0 \\ 0 & \sigma_{22}^* \end{bmatrix} \begin{bmatrix} \beta_1 \\ \beta_2 \end{bmatrix}$$

$$= \left[\begin{bmatrix} \sigma_{11} \\ 0 \end{bmatrix} \begin{bmatrix} \sigma_{22} \\ 0 \end{bmatrix} \right]^{-1} \begin{bmatrix} \sigma_{11}^* & 0 \\ 0 & \sigma_{22}^* \end{bmatrix} \begin{bmatrix} \beta_1 \\ \beta_2 \end{bmatrix}$$
2.2.2 Included X_{2t}

In McCallum’s problem we suppose that $\sigma_{12}^* = 0$. Further, as X_{1t} is not measured with error, $\sigma_{11}^* = 0$. Substituting this into equation 2.2 yields:

$$ \text{plim} \hat{\beta} = \beta - \left[\begin{array}{cc} \sigma_{11} & \sigma_{12} \\ \sigma_{12} & \sigma_{22} + \sigma_{22}^* \end{array} \right]^{-1} \left[\begin{array}{c} 0 \\ 0 \end{array} \right] \beta $$

With a little algebra, the above gives:

$$ \text{plim} \hat{\beta}_1 = \beta_1 + \beta_2 \left(\frac{\sigma_{12}}{\sigma_{11}} \right) \left(\frac{\sigma_{22}^*}{\sigma_{22} + \sigma_{22}^* - \frac{\sigma_{12}^2}{\sigma_{11}}} \right) $$

$$ = \beta_1 + \beta_2 \left(\frac{\sigma_{12}}{\sigma_{11}} \right) \left(\frac{\sigma_{22}^*}{\sigma_{22} (1 - \rho_{12}^2) + \sigma_{22}^*} \right) $$

where ρ_{12}^2 is simply the correlation coefficient, $\frac{\sigma_{12}^2}{\sigma_{11} \sigma_{22}}$. Further, we know that:

$$ 0 < \rho_{12}^2 < 1 $$

so including X_{2t} results in less asymptotic bias (inconsistency). (We get this result by comparing the above with the bias from excluding X_{2t} in section 2.2.1, the result captured in equation 2.1). So, we have justified the kitchen sink approach. This result generalizes to the multiple regressor case - 1 badly measured variable with k good ones (Econometrica, 1972).

2.3 General Case

In the most general case, we have:

$$ \text{plim} \hat{\beta} = \beta - (\Sigma_x^*)^{-1} \Sigma_{\epsilon} \beta = \beta - \left[\begin{array}{ccc} \sigma_{11} + \sigma_{11}^* & \sigma_{12} + \sigma_{12}^* & \sigma_{12}^* \\ \sigma_{12} + \sigma_{12}^* & \sigma_{22} + \sigma_{22}^* & \sigma_{22}^* \\ \sigma_{12}^* & \sigma_{22}^* & \sigma_{22}^* \end{array} \right]^{-1} \left[\begin{array}{c} \sigma_{11}^* \\ \sigma_{12}^* \\ \sigma_{22}^* \end{array} \right] \left[\begin{array}{c} \beta_1 \\ \beta_2 \end{array} \right] $$

With a little algebra we find:

$$ \text{det}(\Sigma_x^*) = \sigma_{11} \sigma_{22} + \sigma_{11}^* \sigma_{22}^* + \sigma_{11}^* \sigma_{22} + \sigma_{11}^* \sigma_{22}^* - \sigma_{12}^2 - 2\sigma_{12} \sigma_{12}^* - \sigma_{12}^2 $$

Therefore:

$$ \text{plim} \hat{\beta} = \beta - \frac{1}{\text{det}(\Sigma_x^*)} \left[\begin{array}{cc} \sigma_{22} + \sigma_{22}^* & -(\sigma_{12} + \sigma_{12}^*) \\ -(\sigma_{12} + \sigma_{12}^*) & \sigma_{11} + \sigma_{11}^* \end{array} \right] \left[\begin{array}{c} \sigma_{11}^* \\ \sigma_{12}^* \end{array} \right] \left[\begin{array}{c} \beta_1 \\ \beta_2 \end{array} \right] $$
Supposing $\sigma_{12}^* = 0$, we get:
\[
\det(\tilde{\Sigma}_x) = \det(\Sigma_x)|_{\sigma_{12}^* = 0} = \sigma_{11}\sigma_{22} + \sigma_{11}\sigma_{22}^* + \sigma_{11}\sigma_{22}^* - \sigma_{12}^2
\]
and thus:
\[
\text{plim} \hat{\beta} = \beta - \left[\begin{array}{c}
\frac{(\sigma_{22} + \sigma_{22}^*)\sigma_{11}^*}{\det(\Sigma_x^*)} \\
\frac{-\sigma_{12}\sigma_{12}^*}{\det(\Sigma_x^*)}
\end{array} \right] \left[\begin{array}{c}
\beta_1 \\
\beta_2
\end{array} \right]
\]

Note that if $\beta_2\sigma_{12} < 0$, OLS may not be downward biased for β_1. If $\beta_2 = 0$, we get:
\[
\text{plim} \hat{\beta}_2 = \frac{\beta_1\sigma_1\sigma_{11}^*}{\det(\Sigma_x^*)}
\]
so, if X_2 were a race variable and blacks get lower quality schooling, (where schooling is measured by X_{1t},) then $\sigma_{12} < 0$, and hence $\hat{\beta}_2 < 0$. This would be a finding in support of labor market discrimination.

2.4 The Kitchen Sink Revisited

McCallum’s analysis suggests that one should toss in a variable measured with error if there is no measurement error in X_{1t}. But suppose that there is measurement error in X_{1t}. Is it still better to include the additional variable measured with error as a regressor? We proceed by imposing $\beta_2 = 0$.

(i) **Excluded X_{2t}**. The equation for earnings with measurement error in X_1 and excluded X_2 is:
\[
y = (X_1^* + \varepsilon_1)\beta_1 + (U + X_2\beta_2) \\
= X_1^*\beta_1 + (U + X_2\beta_2 + \beta_1\varepsilon_1)
\]

Therefore:
\[
\text{plim} \tilde{\beta}_1 = \beta_1 - \beta_1 \left(\frac{\sigma_{11}^*}{\sigma_{11} + \sigma_{11}^*} \right) = \beta_1 \left(\frac{\sigma_{11}}{\sigma_{11} + \sigma_{11}^*} \right) = \beta_1 \left(\frac{1}{1 + \sigma_{11}} \right)
\]

(2.3)
(i) **Included X_{2t}**. From our analysis in the General Case (Section 2.3), we know that:

\[
\text{plim} \hat{\beta}_1 = \beta_1 \left(\frac{(\sigma_{22} + \sigma_{22}^*) \sigma_{11} - \sigma_{12}^2}{\det(\Sigma_{x^*})} \right) .
\]

(2.4)

If \(\sigma_{22}^* = 0 \), so that \(X_{2t} \) is not measured with error:

\[
\text{plim} \hat{\beta}_1 = \beta_1 \left(\frac{\sigma_{11} \sigma_{22} - \sigma_{12}^2}{\sigma_{11} \sigma_{22} - \sigma_{12}^2 + \sigma_{11}^* \sigma_{22}} \right)
\]

\[
= \beta_1 \left(1 - \rho_{12}^2 \right) \left(1 - \rho_{12}^2 + \frac{\sigma_{11}^*}{\sigma_{11}} \right) .
\]

(2.5)

Comparing the eqn 2.3 and eqn 2.5, we see that adding the variable measured without error always exacerbates the bias. For, the excluded bias will be smaller if:

\[
\beta_1 \left(\frac{1}{1 + \sigma_{11}^* / \sigma_{11}} \right) > \beta_1 \left(\frac{1 - \rho_{12}^2}{1 - \rho_{12}^2 + \sigma_{11}^* / \sigma_{11}} \right)
\]

\[
\iff \left(1 - \rho_{12}^2 + \frac{\sigma_{11}^*}{\sigma_{11}} \right) > \left(1 + \frac{\sigma_{11}^*}{\sigma_{11}} \right) (1 - \rho_{12}^2)
\]

\[
\iff 0 > -\rho_{12}^2 \frac{\sigma_{11}^*}{\sigma_{11}}.
\]

which is always the case, provided \(\rho_{12}^2 > 0 \). (Note that the coefficients on \(\beta_1 \) for both the excluded and included case are less than one. So, the larger coefficient is the one with less bias, as stated above.)

Now suppose that \(\sigma_{22}^* > 0 \), so that both variables are measured with error. Then:

\[
\text{plim} \hat{\beta}_1 = \beta_1 \left(\frac{(\sigma_{22} + \sigma_{22}^*) \sigma_{11} - \sigma_{12}^2}{\det(\Sigma_{x^*})} \right)
\]

\[
= \beta_1 \left(1 + \frac{\sigma_{11}^*}{\sigma_{11}} + \frac{\sigma_{11}^* \sigma_{22}^*}{\sigma_{11} \sigma_{22}} + \frac{\sigma_{22}^*}{\sigma_{22}} - \rho_{12}^2 \right) .
\]
Intuitively, adding measurement error in \(X_{2t}\) can only worsen the bias, and thus exclusion should again be preferred to inclusion. Formally, including \(X_{2t}\) gives more bias if and only if:

\[
\beta_1 \left(\frac{1 + \frac{\sigma_{22}^*}{\sigma_{11}} - \rho_{12}^2}{1 + \frac{\sigma_{11}^*}{\sigma_{11}} + \frac{\sigma_{22}^*}{\sigma_{11}} + \frac{\sigma_{22}^*}{\sigma_{22}} - \rho_{12}^2} \right) < \beta_1 \left(\frac{1}{1 + \frac{\sigma_{11}}{\sigma_{11}}} \right)
\]

\[
\iff \left(1 + \frac{\sigma_{11}^*}{\sigma_{11}} \right) \left(1 + \frac{\sigma_{22}^*}{\sigma_{22}} - \rho_{12}^2 \right) < \left(1 + \frac{\sigma_{11}^*}{\sigma_{11}} + \frac{\sigma_{11}^* \sigma_{22}^*}{\sigma_{11} \sigma_{22}} + \frac{\sigma_{22}^*}{\sigma_{22}} - \rho_{12}^2 \right)
\]

\[
\iff -\rho_{12}^2 \frac{\sigma_{11}^*}{\sigma_{11}} < 0.
\]

Thus, provided \(\rho_{12}^2 > 0\), including \(X_{2t}\) results in more bias than excluding it. If \(\rho_{12}^2 = 0\), the bias from including \(X_{2t}\) is obviously seen to be:

\[
\beta_1 \left(\frac{1 + \frac{\sigma_{22}^*}{\sigma_{22}}}{1 + \frac{\sigma_{11}^*}{\sigma_{11}} + \frac{\sigma_{22}^*}{\sigma_{11} \sigma_{22}} + \frac{\sigma_{22}^*}{\sigma_{22}}} \right) = \beta_1 \left(\frac{1 + \frac{\sigma_{22}^*}{\sigma_{22}}}{1 + \frac{\sigma_{11}^*}{\sigma_{11}}} \right) = \beta_1 \left(\frac{1}{1 + \frac{\sigma_{11}^*}{\sigma_{11}}} \right)
\]

so that including and excluding \(X_{2t}\) yields the same result. Finally, from the General Case section, we have:

\[
\text{plim} \hat{\beta}_1 = \frac{\beta_1 (\sigma_{22} + \sigma_{22}^*) \sigma_{11} - \sigma_{12}^2 + \beta_2 (\sigma_{12} \sigma_{22}^*)}{\sigma_{11} \sigma_{22} - \sigma_{12}^2 + \sigma_{11}^* \sigma_{22}^* + \sigma_{11}^* \sigma_{22} + \sigma_{11} \sigma_{22}^*}.
\]

L’Hopital’s rule on the above shows that:

\[
\sigma_{11}^* \to \infty \lim \left(\text{plim} \hat{\beta}_1 \right) = 0, \quad \text{and}
\]

\[
\lim_{\sigma_{22}^* \to \infty} \left(\text{plim} \hat{\beta}_1 \right) = \frac{\beta_1 \sigma_{11} + \beta_2 \sigma_{12}}{\sigma_{11} + \sigma_{11}^*} = \frac{\beta_1 \sigma_{11}}{\sigma_{11} + \sigma_{11}^*} + \frac{\beta_2 \sigma_{12}}{\sigma_{11} + \sigma_{11}^*}.
\]

3 Sibling Models: Components of Variance Scheme

Suppose that data on two brothers, say \(\alpha\) and \(\beta\), is at our disposal. Without loss of generality, we will consider how to estimate parameters of interest for
person α in what follows. We will begin by introducing a general model and then focus on the two-person case mentioned above. Consider the following triangular system:

\begin{align*}
 y_{1ij} &= \varepsilon_{1ij} \\
 y_{2ij} &= \nu_{12}y_{1ij} + \varepsilon_{2ij} \\
 y_{3ij} &= \nu_{13}y_{1ij} + \nu_{23}y_{2ij} + \varepsilon_{3ij}
\end{align*}

Here, ij indexes the j^{th} person in the i^{th} group. We assume that ε_{lij} and $\varepsilon_{l'ij}$ are uncorrelated (i.e., uncorrelated across groups). Further, we suppose:

\begin{align*}
 \varepsilon_{kij} &= \lambda_k h_{ij} + \mu_{kij} \\
 h_{ij} &= F_i + g_{ij},
\end{align*}

for $k = 1, 2, 3$. We assume μ_{kij} is uncorrelated across equations and across j within the group, F_i is iid across groups, and g_{ij} is iid within groups and uncorrelated with F_i.

3.1 Estimation

We specialize the above model into a two person framework and propose a similar three equation system. Let $y_1 =$ early (pre-school) test score, $y_2 =$ schooling (years), and $y_3 =$ earnings. It seems plausible to write the equation system:

\begin{align*}
 y_1 &= h + U_1 \\
 y_2 &= \lambda_2 h + U_2. \\
 y_3 &= \nu_{23}y_2 + \lambda_3 h + U_3,
\end{align*}

where $h =$ ability. Regressing y_3 on y_2 clearly gives biased estimates of ν_{23} as $E(h \mid y_2) \neq 0$. If $\lambda_3 > 0$, then OLS estimates of ν_{23} are upward biased. One estimation approach is to use y_1 as a proxy for ability:

\begin{align*}
 y_3 &= \nu_{23}y_2 + \lambda_3 (y_1 - U_1) + U_3.
\end{align*}

However, this results in a similar problem — regressing y_3 on y_1 and y_2 will give biased estimates as y_1 is correlated with our residual. (i.e., y_1 is an imperfect proxy).

Solutions:
One solution is to use $y_{1\beta}$ as an instrument for $y_{1\alpha}$. Why is this a valid IV? From our construction of the model, we know that the U_i are uncorrelated across equations and groups. Further, test scores are correlated across siblings. That is, $\text{Cov}(y_{1\alpha}, y_{1\beta}) \neq 0$ by our group structure.

Another solution is possible if there exists an additional early reading on the same person:

$$y_0 = \lambda_0 h + U_0.$$

Then if $\lambda_0 \neq 0$, y_0 is a valid proxy for y_1, and we can perform 2SLS.

3.2 Griliches and Chamberlain model

Here we have a modified triangular system as follows:

\[
\begin{align*}
 y_1 &= \lambda_1 h + U_1 \\
 y_2 &= \nu_{12} y_1 + \lambda_2 h + U_2 \\
 y_3 &= \nu_{13} y_1 + \nu_{23} y_2 + \lambda_3 h + U_3
\end{align*}
\]

where $y_1 = \text{years schooling}$, $y_2 = \text{late test score (SAT)}$, and $y_3 = \text{earnings}$. Note that there are alternative models with other dependent variables. For example, \{y_1 = \text{schooling}, y_2 = \text{early earnings}, and y_3 = \text{late earnings}\}, and \{y_1 = \text{schooling}, y_2 = \text{consumption}, and y_3 = \text{earnings}\}. Getting the equation system into reduced form and expressing as matrix notation, we write:

$$y_k = d_k h + \rho_k,$$

where:

\[
d_k = \begin{bmatrix} d_1 \\ d_2 \\ d_3 \end{bmatrix} = \begin{bmatrix} \lambda_1 \\ \lambda_2 + \nu_{12} \lambda_1 \\ \lambda_3 + \nu_{13} \lambda_1 + \nu_{23} (\lambda_2 + \nu_{12} \lambda_1) \end{bmatrix}
\]

and:

\[
\rho_k = \begin{bmatrix} \rho_1 \\ \rho_2 \\ \rho_3 \end{bmatrix} = \begin{bmatrix} \mu_1 \\ \mu_2 + \nu_{12} \mu_1 \\ \mu_3 + \nu_{13} \mu_1 + \nu_{23} (\mu_2 + \nu_{12} \mu_1) \end{bmatrix}
\]
Estimation. For estimation, we impose that $\nu_{23} = 0$. In our second example of section 3.2, this would be equivalent to stating that there is no correlation between transient income and consumption (permanent income hypothesis). In general, with one factor, we need one more exclusion than that implied by triangularity.

(i) y_1 proxies h.

$$h = \frac{y_1 - \rho_1}{d_1}$$

so that

$$y_2 = \frac{d_2}{d_1} y_1 - \frac{d_2}{d_1} \rho_1 + \rho_2.$$

We can then estimate $\frac{d_2}{d_1}$ consistently by using $y_{1\beta}$ as an instrument for $y_{1\alpha}$ in the equation above.

(ii) Get residuals from (i): $z = \rho_2 - \frac{d_2}{d_1} \rho_1$.

(iii) Use the residuals as an instrument for y_1 in the y_3 equation. Z is valid since it is both uncorrelated with h and U_3, and it is correlated with y_1:

$$Cov(y_1, z) = Cov\left(y_1, \rho_2 - \frac{d_2}{d_1} \rho_1 \right)$$

$$= Cov\left(\lambda_1 h + U_1, U_2 + \nu_1 U_1 - \frac{\lambda_2 + \nu_1 \lambda_1 U_1}{\lambda_1} U_1 \right)$$

$$= Cov\left(\lambda_1 h + U_1, U_2 - \frac{\lambda_2}{\lambda_1} U_1 \right) \neq 0$$

if $U_1 \neq 0$, and, $\lambda_2 \neq 0$. Thus we can estimate ν_{13}.

(iv) Interchange the role of y_2 and y_3 to estimate ν_{12}.

(v) Form the residual (and recall that ν_{13} is known and $\nu_{23} = 0$)

$$w = y_3 - \nu_{13} y_1 = \lambda_3 h + U_3.$$

(vi) Use y_1 as a proxy for ability. Substituting this into V gives:

$$w = \frac{\lambda_3}{\lambda_1} y_1 + \frac{\lambda_3}{\lambda_1} U_3 - \frac{\lambda_3}{\lambda_1} U_1.$$

12
(vii) Now use \(y_{1\beta} \) as an instrument for \(y_{1\alpha} \) in the above to get an estimate of \(\frac{\lambda_3}{\lambda_1} \).

(viii) Interchange the role of \(y_2 \) and \(y_3 \) to estimate \(\frac{\lambda_2}{\lambda_1} \).

3.3 Triangular systems more generally

Without loss of generality, suppose that \(y_2 \) is excluded from the \(t^{th} \) equation of our system. (We are supposing the existence of an extra exclusion than that implied by triangularity). We seek to estimate the parameters of the system in equation \(t \) as well as equations before and after \(t \).

Equation \(t \).

i. Use \(y_1 \) as a proxy for ability. Solving for \(h \) and substituting into the equation:

\[
y_k = d_k h + \rho_k
\]

we get:

\[
y_k = \frac{d_k}{d_1} y_1 - \frac{d_k}{d_1} \rho_1 + \rho_k
\]

and we are considering \(k = 2, \ldots, t-1 \). The ratio \(\frac{d_k}{d_1} \) can then be identified using \(y_{1\beta} \) as an instrument for \(y_{1\alpha} \).

ii. Form the residuals:

\[
z_k = \rho_k - \frac{d_k}{d_1} \rho_1 \quad k = 2, \ldots, t - 1
\]

Now we have \(t-2 \) IV’s (\(z_2, z_3, \ldots, z_{t-1} \)) for the \(t-2 \) independent variables in the \(t^{th} \) equation (\(y_1, y_3, \ldots, y_{t-1} \)), so we can consistently estimate the coefficients in the \(t^{th} \) equation.

Equations before \(t \).

iii. Form:

\[
y_t^* = y_t - \nu_1 t y_1 - \cdots - \nu_{t-1} t y_{t-1}
\]
We can use \(y_1, \cdots, y_{k-1}, y_t^*\) to form \(k-1\) purged IV’s and \(y_{t\beta}^*\) is used as a proxy for unobserved ability, \(h\). In this way, we can estimate all of the parameters in equations \(k < t\). (Note the sequential order implicit in this triangular system. We must first estimate \(t\) before this step can be made.)

Example. Suppose \(t > 3\) and
\[y_3 = \nu_{13}y_1 + \nu_{23}y_2 + \lambda_3 h + U_3.\]

Use \(y_t^* = \lambda_t h + U_t\) as a proxy for \(h\). Substituting this into our \(y_3\) equation yields:
\[y_3 = \nu_{13}y_1 + \nu_{23}y_2 + \frac{\lambda_3}{\lambda_t} y_t^* + \left(U_3 - \frac{\lambda_3}{\lambda_t} U_t \right).\]

Observe that \(y_1\) and \(y_2\), are independent of our residual, but \(y_t^*\) is not. We can use \(y_{t\beta}^*\) as an instrument for \(y_t^*\) to estimate the parameters above. This obviously generalizes for all equations less than \(t\).

Equations after \(t\).

iii. Assume identification for all equations through \(t\) via an exclusion restriction in equation \(t\).

Example. As an example, consider the following:
\[y_4 = \nu_{14}y_1 + \nu_{24}y_2 + \nu_{34}y_3 + \lambda_4 h + U_4\]

Define:
\[y_2^* \equiv y_2 - \nu_{12}y_1, \quad y_3^* \equiv y_3 - \nu_{13}y_1 - \nu_{23}y_2\]

Solving for \(y_1\) and \(y_2\) and substituting into the equation for \(y_4\), we find:
\[y_4 = \nu_{14}y_1 + \nu_{24}y_2 + \nu_{34} (y_3^* + \nu_{13}y_1 + \nu_{23}y_2) + \lambda_4 h + U_4\]
\[= (\nu_{14} + \nu_{34} \nu_{13}) y_1 + (\nu_{24} + \nu_{34} \nu_{23}) y_2 + \nu_{34} y_3^* + \lambda_4 h + U_4\]
\[= (\nu_{14} + \nu_{34} \nu_{13}) y_1 + (\nu_{24} + \nu_{34} \nu_{23}) (y_2^* + \nu_{12}y_1) + \nu_{34} y_3^* + \lambda_4 h + U_4\]
\[= \nu_{14}^* y_1 + \nu_{24}^* y_2 + \nu_{34} y_3^* + \lambda_4 h + U_4\]
where:

\[
\begin{align*}
\nu_{14}^* &= \nu_{14} + \nu_{24}^* \nu_{12} + \nu_{34} \nu_{13} \\
\nu_{24}^* &= \nu_{24} + \nu_{23} \nu_{34}
\end{align*}
\]

Using \(y_1 \) as a proxy for \(h \) and substituting we get:

\[
y_4 = \pi_1 y_1 + \nu_{24}^* y_3^* + \nu_{34} y_3^* + \left(U_4 - \frac{\lambda_4}{\lambda_1} U_1 \right)
\]

where \(\pi_1 = \nu_{14} + \frac{\lambda_4}{\lambda_1} \). We can then use \(y_{1\beta}, y_{2\alpha}^*, y_{3\alpha}^* \) as instruments to get an estimate of \(\nu_{34} \). Define:

\[
\bar{y}_4 = y_4 - \nu_{34} y_3 = \nu_{14} y_1 + \nu_{24} y_2 + \lambda_4 h + U_4
\]

(Excluding \(y_3 \) allows us to estimate the remaining parameters). Using \(y_3^* \) as a proxy for \(h \) yields:

\[
y_4 = \nu_{14} y_1 + \nu_{24} y_2 + \frac{\lambda_4}{\lambda_3} y_3^* + \left(U_4 - \frac{\lambda_4}{\lambda_3} U_3 \right).
\]

We can then estimate \(\nu_{14} \), and \(\nu_{24} \) by using \(y_{1\alpha}, y_{2\alpha}, y_{3\beta}^* \) as an IV. We can continue estimating. For example, consider the 5th equation:

(i). Rewrite in terms of \(y_1, y_2^*, y_3^*, \) and \(y_4^* \).

(ii). Use \(y_1 \) to proxy \(h \).

(iii). Use a cross-member IV for \(y_1 \) in addition to \(y_j^*, j = 2, 3, 4 \) which gives our estimate of \(\nu_{45} \).

(iv). Now form \(\bar{y}_5 = y_5 - \nu_{45} y_4 \).

(v). With \(y_4 \) excluded, we can use purged IV’s on \(\bar{y}_5 \), as before.

3.4 Comments

1. One needs to check the rank order conditions for identification (requires imposing an exclusion restriction).

2. Griliches and Chamberlain (IER, 1976) find a small ability bias - 3rd decimal point difference in schooling coefficient.
4 Twin Methods

Basic Principle: Monozygotic or MZ (identical) twins are more similar than Dizygotic or DZ (fraternal) twins. The key assumption is that if environmental factors are the same for both types of twins, then we can estimate genetic components to outcomes.

4.1 Univariate Twin Model

Let \(y \) = observed phenotypic variable, \(x \) = unobserved genotype, and \(u \) = environment. Further, suppose that we can write our model additively:

\[
y = x + u
\]

and assume independence of \(x \) and \(u \) so that \(\sigma_y^2 = \sigma_x^2 + \sigma_u^2 \). Now suppose that we have data on another individual:

\[
y^* = x^* + u^*
\]

Then our phenotypic covariance is:

\[
\text{Cov}(y, y^*) = \text{Cov}(x, x^*) + \text{Cov}(u, u^*)
\]

where we are imposing the assumption:

\[
\text{Cov}(x, u^*) = \text{Cov}(x^*, u) = 0.
\]

Defining standardized forms and some simplifying notation, let:

\[
\tilde{y} \equiv \frac{y}{\sigma_y}, \quad \tilde{x} \equiv \frac{x}{\sigma_x}, \quad \tilde{u} \equiv \frac{u}{\sigma_u}, \quad h^2 \equiv \frac{\sigma_x^2}{\sigma_y^2}, \quad \rho^2 \equiv \frac{\sigma_u^2}{\sigma_y^2}
\]

Thus, \(\tilde{y}\sigma_y = \tilde{x}\sigma_x + \tilde{u}\sigma_u \) which implies \(\tilde{y} = h\tilde{x} + \rho\tilde{u} \). We can also derive the identity:

\[
h^2 + \rho^2 = \frac{\sigma_x^2}{\sigma_y^2} + \frac{\sigma_u^2}{\sigma_y^2} = 1
\]
where the last step follows from our assumption of independence. Now we
wish to consider the correlation between observed phenotypes of our two
individuals:

\[C = \text{Corr}(y, y^*) \]
\[= \text{Corr}(h\tilde{x} + \rho\tilde{u}, h\tilde{x}^* + \rho\tilde{u}^*) \]
\[= h^2 \frac{\text{Cov}(\tilde{x}, \tilde{x}^*)}{\text{Var}(\tilde{x})} + \rho^2 \frac{\text{Cov}(\tilde{u}, \tilde{u}^*)}{\text{Var}(\tilde{u})} \]
\[= h^2 g + \rho^2 \nu \]

say, with \(g \) and \(\nu \) defined as above. We assume that \(g_{MZ} = 1 \) and that \(g_{DZ} < 1 \). That is, the genotypic variable is perfectly correlated among identical
twins, but less than perfectly correlated among fraternal twins. Replacing
this result into the above produces:

\[C_{MZ} = h^2 + \nu_{MZ} \rho^2 \]
\[C_{DZ} = h^2 g_{DZ} + \nu_{DZ} \rho^2 \]

Therefore:

\[C_{MZ} - C_{DZ} = (1 - g_{DZ})h^2 + (\nu_{MZ} - \nu_{DZ})\rho^2 \]
\[= (1 - g_{DZ})h^2 + (\nu_{MZ} - \nu_{DZ})(1 - h^2) \]

where the last equality follows from our established identity. Solving for \(h^2 \),
we find:

\[h^2 = \frac{(C_{MZ} - C_{DZ}) - (\nu_{MZ} - \nu_{DZ})}{(1 - g_{DZ}) - (\nu_{MZ} - \nu_{DZ})}. \]

The only known in the right hand side of the above equality is the expression
\((C_{MZ} - C_{DZ}) \), which is simply the correlation coefficient of the observed
phenotypic variable. The remaining two expressions, \((1 - g_{DZ}) \) and \((\nu_{MZ} - \nu_{DZ}) \) can not be computed as they represent statistics on variables we don’t
observe. One could impose \(\nu_{MZ} = \nu_{DZ} \) so that:

\[h^2 = \frac{C_{MZ} - C_{DZ}}{1 - g_{DZ}}. \]
The expression g_{DZ} is a measure of how closely the genetic variable is correlated across our two observations. One could then guess or estimate a value for this parameter to derive corresponding estimates of h^2, the ratio of how much variance in the phenotypic variable is explained by variance in the genetic component. Other studies have attempted to include $Cov(x, u) \neq 0$ but this presents an identification problem. A typical value of the estimable portion of the above, $C_{MZ} - C_{DZ}$, is commonly reported in the literature to be 0.2.
Appendix

Derivation of Equation 2.2
We can write

\[y_t = x^* \beta + (U_t - \epsilon_1 t \beta_1 - \epsilon_2 t \beta_2), \]

where:

\[x^* = \begin{bmatrix} x_1^* \\ x_2^* \end{bmatrix} \quad \text{and} \quad \beta = \begin{bmatrix} \beta_1 \\ \beta_2 \end{bmatrix}, \]

and \(x_1^*, x_2^* \), are \(T \times 1 \). So:

\[
\hat{\beta}_{OLS} = \left(x^* x^* \right)^{-1} (x^* y) \\
= \beta + \left(x^* x^* \right)^{-1} (x^* (U - \epsilon_1 \beta_1 - \epsilon_2 \beta_2)) \\
= \beta + \left(\frac{x^* x^*}{T} \right)^{-1} \left(\frac{x^* U}{T} - \left(\frac{x^* \epsilon_1 \beta_1}{T} \right) - \left(\frac{x^* \epsilon_2 \beta_2}{T} \right) \right) \\
\rightarrow \beta + \left(E \left(x^* x^* \right) \right)^{-1} \left(E \left(x^* U \right) - E \left(x^* \epsilon_1 \right) \beta_1 - E \left(x^* \epsilon_2 \right) \beta_2 \right) \\
= \beta - \left[\begin{bmatrix} E \left(x_1^* x_1^* \right) \\ E \left(x_2^* x_1^* \right) \end{bmatrix} \begin{bmatrix} E \left(x_1^* x_2^* \right) \\ E \left(x_2^* x_2^* \right) \end{bmatrix} \right]^{-1} \left[\begin{bmatrix} E \left(x_1^* \epsilon_1 \right) \\ E \left(x_2^* \epsilon_1 \right) \end{bmatrix} \beta_1 + E \left[\begin{bmatrix} x_1^* \epsilon_2 \\ x_2^* \epsilon_2 \end{bmatrix} \right] \beta_2 \right) \\
= \beta - \left[\begin{bmatrix} E \left(x_1^* x_1^* \right) \\ E \left(x_2^* x_1^* \right) \end{bmatrix} \begin{bmatrix} E \left(x_1^* x_2^* \right) \\ E \left(x_2^* x_2^* \right) \end{bmatrix} \right]^{-1} \left[\begin{bmatrix} E \left(x_1^* \epsilon_1 \right) \\ E \left(x_2^* \epsilon_1 \right) \end{bmatrix} \beta_1 + E \left[\begin{bmatrix} x_1^* \epsilon_2 \\ x_2^* \epsilon_2 \end{bmatrix} \right] \beta_2 \right) \\
= \left(I - (\Sigma x^*)^{-1} \right) \beta \\
= \left(I - (\Sigma x^*)^{-1} (\Sigma \epsilon) \right) \beta
\]

where the second-to-last step follows from the independence of \(x \) and \(\epsilon \). This type of argument is also used to derive the probability limit of the \(\beta' \)'s in section 1.